CS 425 / ECE 428
Distributed Systems
Fall 2022
Indranil Gupta (Indy)
Lecture 2-3: Introduction to Cloud Computing
What was the world’s first bug in a program?
Quiz: Where is the World’s Largest Datacenter?
Quiz: Where is the World’s Largest Datacenter?

• (2020) Range International Info Group, China, 6.3 Million sq. ft.
• (2018) China Telecom. 10.7 Million sq. ft.
• (2015) In Chicago!
 • 350 East Cermak, Chicago, 1.1 MILLION sq. ft.
 • Shared by many different “carriers”
 • Critical to Chicago Mercantile Exchange
• See:
(There was) The Hype!

• Forrester in 2010 – Cloud computing will go from $40.7 billion in 2010 to $241 billion in 2020.
• Today: Cloud Market is $200B

• Companies and even Federal/state governments using cloud computing now: fbo.gov
Many Cloud Providers

• AWS: Amazon Web Services
 – EC2: Elastic Compute Cloud
 – S3: Simple Storage Service
 – EBS: Elastic Block Storage
• Microsoft Azure
• Google Cloud/Compute Engine/AppEngine
• Rightscale, Salesforce, EMC, Gigaspaces, 10gen, Datastax, Oracle, VMWare, Yahoo, Cloudera
• And many many more!
Two Categories of Clouds

• Can be either a (i) public cloud, or (ii) private cloud
• Private clouds are accessible only to company employees
• Public clouds provide service to any paying customer:
 – Amazon S3 (Simple Storage Service): store arbitrary datasets, pay per GB-month stored
 • As of 2022: 0.09c-2 c per GB month
 – Amazon EC2 (Elastic Compute Cloud): upload and run arbitrary OS images, pay per CPU hour used
 • As of 2022: 2 c per CPU hr to 40c per CPU hr (depending on strength), only CPUs not GPUs
 – Google cloud: similar pricing ranges as above
 – Google AppEngine/Compute Engine: develop applications within their appengine framework, upload data that will be imported into their format, and run
Customers Save Time and $$$

- Dave Power, Associate Information Consultant at Eli Lilly and Company: “With AWS, Powers said, a new server can be up and running in **three minutes** (it used to take Eli Lilly **seven and a half weeks** to deploy a server internally) and a **64-node Linux cluster** can be online in five minutes (compared with three months internally). … It's just shy of instantaneous.”

- Ingo Elfering, Vice President of Information Technology Strategy, GlaxoSmithKline: “With Online Services, we are able to reduce our IT **operational costs** by roughly **30%** of what we’re spending”

- Jim Swartz, CIO, Sybase: “At Sybase, a private cloud of virtual servers inside its datacenter has saved nearly **$US2 million annually** since 2006, Swartz says, because the company can share computing power and storage resources across servers.”

- 100s of startups in Silicon Valley can harness large computing resources without buying their own machines.
But what exactly IS a cloud?
What is a Cloud?

- It’s a cluster!
- It’s a supercomputer!
- It’s a datastore!
- It’s superman!
- None of the above
- All of the above

Cloud = Lots of storage + compute cycles nearby
What is a Cloud?

• A single-site cloud (aka “Datacenter”) consists of
 – Compute nodes (grouped into racks) (2)
 – Switches, connecting the racks
 – A network topology, e.g., hierarchical
 – Storage (backend) nodes connected to the network (3)
 – Front-end for submitting jobs and receiving client requests (1)
 – (1-3: Often called “three-tier architecture”)
 – Software Services

• A geographically distributed cloud consists of
 – Multiple such sites
 – Each site perhaps with a different structure and services
A Sample Cloud Topology

So then, what is a cluster?
“A Cloudy History of Time”

- The first datacenters!
- Timesharing Companies & Data Processing Industry
- Clusters
- Grids
- Clouds and datacenters
- PCs (not distributed!)
- Peer to peer systems
- 2012
“A Cloudy History of Time”

1940

1950

1960

1970

1980

1990

2000

2012

First large datacenters: ENIAC, ORDVAC, ILLIAC
Many used vacuum tubes and mechanical relays

Berkeley NOW Project
Supercomputers
Server Farms (e.g., Oceano)

P2P Systems (90s-00s)
• Many Millions of users
• Many GB per day

Data Processing Industry
- 1968: $70 M. 1978: $3.15 Billion

Timesharing Industry (1975):
• Market Share: Honeywell 34%, IBM 15%,
 Xerox 10%, CDC 10%, DEC 10%, UNIVAC 10%
• Honeywell 6000 & 635, IBM 370/168,
 Xerox 940 & Sigma 9, DEC PDP-10, UNIVAC 1108

Grids (1980s-2000s):
• GriPhyN (1970s-80s)
• Open Science Grid and Lambda Rail (2000s)
• Globus & other standards (1990s-2000s)

Clouds
Trends: Technology

• Doubling Periods – storage: 12 mos, bandwidth: 9 mos, and (what law is this?) cpu compute capacity: 18 mos

• Then and Now
 – Bandwidth
 • 1985: mostly 56Kbps links nationwide
 • 2015: Tbps links widespread
 – Disk capacity
 • Today’s PCs have TBs, far more than a 1990 supercomputer
Trends: Users

• Then and Now

Biologists:
 – 1990: were running small single-molecule simulations
 – Today: CERN’s Large Hadron Collider producing many PB/year
Prophecies

• In 1965, MIT's Fernando Corbató and the other designers of the Multics operating system envisioned a computer facility operating “like a power company or water company”.

• **Plug** your thin client into the computing Utility and **Play** your favorite Intensive Compute & Communicate Application
 – Have today’s clouds brought us closer to this reality? Think about it.
Four Features New in Today’s Clouds

I. Massive scale.

II. On-demand access: Pay-as-you-go, no upfront commitment.
 – And anyone can access it

III. Data-intensive Nature: What was MBs has now become TBs, PBs and XBs.
 – Daily logs, forensics, Web data, etc.
 – Humans have data numbness: Wikipedia (large) compressed is only about 10 GB!

IV. New Cloud Programming Paradigms: MapReduce/Hadoop, NoSQL/Cassandra/MongoDB and many others.
 – High in accessibility and ease of programmability
 – Lots of open-source

Combination of one or more of these gives rise to novel and unsolved distributed computing problems in cloud computing.
I. Massive Scale

- **Facebook [GigaOm, 2012]**
 - 30K in 2009 -> 60K in 2010 -> 180K in 2012

- **Microsoft [NYTimes, 2008]**
 - 150K machines
 - Growth rate of 10K per month
 - 80K total running Bing
 - In 2013, Microsoft Cosmos had 110K machines (4 sites)

- **Yahoo! [2009]:**
 - 100K
 - Split into clusters of 4000

- **AWS EC2 [Randy Bias, 2009]**
 - 40K machines
 - 8 cores/machine

- **eBay [2012]:** 50K machines

- **HP [2012]:** 380K in 180 DCs

- **Google [2011, Data Center Knowledge]:** 900K
What does a datacenter look like from inside?

- A virtual walk through a datacenter
Servers

Front

Back

In

Some highly secure (e.g., financial info)
Cooling

Air sucked in from top (also, Bugzappers)

Water sprayed into air

Water purified

15 motors per server bank
Power

Off-site

On-site

• WUE = Annual Water Usage / IT Equipment Energy (L/kWh) – low is good
• PUE = Total facility Power / IT Equipment Power – low is good
 (e.g., Google~1.1)
Extra - Fun Videos to Watch

• **Microsoft GFS Datacenter Tour (Youtube)**
 - http://www.youtube.com/watch?v=hOxA1l1pQIw

• **Timelapse of a Datacenter Construction on the Inside (Fortune 500 company)**
 - http://www.youtube.com/watch?v=ujO-xNvXj3g
II. On-demand access: *aaS Classification

On-demand: renting a cab vs. (previously) renting a car, or buying one. E.g.:
 – AWS Elastic Compute Cloud (EC2): a few cents to a few $ per CPU hour
 – AWS Simple Storage Service (S3): a few cents per GB-month

• HaaS: Hardware as a Service
 – You get access to barebones hardware machines, do whatever you want with them,
 Ex: Your own cluster
 – Not always a good idea because of security risks

• IaaS: Infrastructure as a Service
 – You get access to flexible computing and storage infrastructure. Virtualization or
 containerization is one way of achieving this (cgroups, Kubernetes, Dockers,
 VMs,…). Often said to subsume HaaS.
 – Ex: Amazon Web Services (AWS: EC2 and S3), OpenStack, Eucalyptus, Rightscale,
 Microsoft Azure, Google Cloud.
II. On-demand access: *aaS

Classification

• PaaS: Platform as a Service
 – You get access to flexible computing and storage infrastructure, coupled with a software platform (often tightly coupled)
 – Ex: Google’s AppEngine (Python, Java, Go)

• SaaS: Software as a Service
 – You get access to software services, when you need them. Often said to subsume SOA (Service Oriented Architectures).
 – Ex: Google docs, MS Office 365 Online

• And new recently: FaaS = Function as a Service
 – e.g., AWS Lambda, Azure Functions, etc.
III. Data-intensive Computing

• Computation-Intensive Computing
 – Example areas: MPI-based, High-performance computing, Grids
 – Typically run on supercomputers (e.g., NCSA Blue Waters)

• Data-Intensive
 – Typically store data at datacenters
 – Use compute nodes nearby
 – Compute nodes run computation services

• In data-intensive computing, the focus shifts from computation to the data:
 CPU utilization no longer the most important resource metric, instead I/O is
 (disk and/or network)
IV. New Cloud Programming Paradigms

- Easy to write and run highly parallel programs in new cloud programming paradigms:
 - Google: MapReduce and Sawzall
 - Amazon: Elastic MapReduce service (pay-as-you-go)
 - Google (MapReduce)
 - Indexing: a chain of 24 MapReduce jobs
 - ~200K jobs processing 50PB/month (in 2006)
 - Yahoo! (Hadoop + Pig)
 - WebMap: a chain of several MapReduce jobs
 - 300 TB of data, 10K cores, many tens of hours (~2008)
 - Facebook (Hadoop + Hive)
 - ~300TB total, adding 2TB/day (in 2008)
 - 3K jobs processing 55TB/day
 - Similar numbers from other companies, e.g., Yieldex, eharmony.com, etc.
 - NoSQL: MySQL is an industry standard, but Cassandra is 2400 times faster!
Two Categories of Clouds

• Can be either a (i) public cloud, or (ii) private cloud
• Private clouds are accessible only to company employees
• Public clouds provide service to any paying customer

• You’re starting a new service/company: should you use a public cloud or purchase your own private cloud?
Single site Cloud: to Outsource or Own?

- Medium-sized organization: wishes to run a service for M months
 - Service requires 128 servers (1024 cores) and 524 TB
 - Same as UIUC CCT (Cloud Computing Testbed) cloud site (bought in 2009, now decommissioned)

- **Outsource** (e.g., via AWS): *monthly* cost
 - S3 costs: $0.12 per GB month. EC2 costs: $0.10 per CPU hour (costs from 2009)
 - Storage = $0.12 \times 524 \times 1000 \sim $62 K
 - Total = Storage + CPUs = $62 K + $0.10 \times 1024 \times 24 \times 30 \sim $136 K

- **Own**: monthly cost
 - Storage \sim $349 K / M
 - Total \sim $1555 K / M + 7.5 K (includes 1 sysadmin / 100 nodes)
 - using 0.45:0.4:0.15 split for hardware:power:network and 3 year lifetime of hardware
Single site Cloud: to Outsource or Own?

- Breakeven analysis: more preferable to own if:
 - $349 K / M < $62 K (storage)
 - $ 1555 K / M + 7.5 K < $136 K (overall)

 Breakeven points
 - $M > 5.55$ months (storage)
 - $M > 12$ months (overall)

- As a result
 - Startups use clouds a lot
 - Cloud providers benefit monetarily most from storage
Academic Clouds: Emulab

• A community resource open to researchers in academia and industry. Very widely used by researchers everywhere today.
• https://www.emulab.net/
• A cluster, with currently ~500 servers
• Founded and owned by University of Utah (led by Late Prof. Jay Lepreau)

• As a user, you can:
 – Grab a set of machines for your experiment
 – You get root-level (sudo) access to these machines
 – You can specify a network topology for your cluster
 – You can emulate any topology
A community resource open to researchers in academia and industry

http://www.planet-lab.org/

Currently, ~1077 nodes at ~500 sites across the world

Founded at Princeton University (led by Prof. Larry Peterson), but owned in a federated manner by the sites

Node: Dedicated server that runs components of PlanetLab services.
Site: A location, e.g., UIUC, that hosts a number of nodes.
Sliver: Virtual division of each node. Currently, uses VMs, but it could also other technology. Needed for timesharing across users.
Slice: A spatial cut-up of the PL nodes. Per user. A slice is a way of giving each user (Unix-shell like) access to a subset of PL machines, selected by the user. A slice consists of multiple slivers, one at each component node.

Thus, PlanetLab allows you to run real world-wide experiments.

Many services have been deployed atop it, used by millions (not just researchers): Application-level DNS services, Monitoring services, CoralCDN, etc.

PlanetLab is basis for NSF GENI https://www.geni.net/
Public Research Clouds

- Accessible to researchers with a qualifying grant
- Chameleon Cloud: https://www.chameleoncloud.org/
 - HaaS
 - OpenStack (~AWS)
- CloudLab: https://www.cloudlab.us/
 - Build your own cloud on their hardware
Summary

• Clouds build on many previous generations of distributed systems
• Especially the timesharing and data processing industry of the 1960-70s.
• Need to identify unique aspects of a problem to classify it as a new cloud computing problem
 – Scale, On-demand access, data-intensive, new programming
• Otherwise, the solutions to your problem may already exist!
• Next: Mapreduce!