Announcements

- 4 cr on campus students: Please submit your MP groups by 5 pm today
- All: Please take student survey (find it on Piazza, or on https://courses.engr.illinois.edu/cs425/fa2020/index.html)
- Coursera students: MP1 released
Jokes for this Topic

• (You will start to get these jokes as you understand the topics)
• Did you know do Map and Reduce make terrible roommates? They are always fighting … Map always accuses Reduce of taking its keys, and Reduce always accuses Map of shuffling its keys.
• Why does a Hadoop cluster always tell a good story? … Because it spins on a good YARN.
• What is common between the Tom Cruise movie “Minority Report” and Hadoop/MapReduce scheduling? … Speculative Execution.
1. (MapReduce) You are given a symmetric social network (like Facebook) where a is a friend of b implies that b is also a friend of a. The input is a dataset D (sharded) containing such pairs (a, b) – note that either a or b may be a lexicographically lower name. Pairs appear exactly once and are not repeated. Find the last names of those users whose first name is “Kanye” and who have at least 300 friends. You can chain Mapreduces if you want (but only if you must, and even then, only the least number). You don’t need to write code – pseudocode is fine as long as it is understandable. Your pseudocode may assume the presence of appropriate primitives (e.g., “firstname(user_id)”, etc.). The Map function takes as input a tuple (key=a,value=b).
2. For an asymmetrical social network, you are given a dataset D where lines consist of (a,b) which means user a follows user b. Write a MapReduce program (Map and Reduce separately) that outputs the list of all users U who satisfy the following three conditions simultaneously: i) user U has at least 2 million followers, and ii) U follows fewer than 20 other users, and iii) all the users that U follows, also follow U back.
Exercises (3)

3. For an asymmetrical social network, you are given a dataset \(D \) where lines consist of \((a,b)\) which means user \(a \) follows user \(b \). Write a MapReduce program (Map and Reduce separately) that outputs the list of all user pairs \((x,y)\) who satisfy the following three conditions simultaneously: i) \(x \) has fewer than 100 M followers, ii) \(y \) has fewer than 100M followers, iii) \(x \) and \(y \) follow each other, and iv) the sum of \(x \)'s followers and \(y \)'s followers (double-counting common followers that follow both \(x \) and \(y \) is ok) is 100 M or more. Your output should not contain duplicates (i.e., no \((x,y)\) and \((y,x)\)).
“A Cloudy History of Time”

1940:
- The first datacenters!

1950:
- Timesharing Companies & Data Processing Industry

1960:
- Clusters

1970:
- Grids

1980:
- Clouds and datacenters

1990:
- PCs (not distributed!)

2000:
- Peer to peer systems

2012:
- Clouds and datacenters
“A Cloudy History of Time”

First large datacenters: ENIAC, ORDVAC, ILLIAC
Many used vacuum tubes and mechanical relays

Data Processing Industry
- 1968: $70 M. 1978: $3.15 Billion

Timesharing Industry (1975):
• Market Share: Honeywell 34%, IBM 15%,
 Xerox 10%, CDC 10%, DEC 10%, UNIVAC 10%
• Honeywell 6000 & 635, IBM 370/168,
 Xerox 940 & Sigma 9, DEC PDP-10, UNIVAC 1108

Berkeley NOW Project
Supercomputers
Server Farms (e.g., Oceano)
P2P Systems (90s-00s)
• Many Millions of users
• Many GB per day

Grids (1980s-2000s):
• GriPhyN (1970s-80s)
• Open Science Grid and Lambda Rail (2000s)
• Globus & other standards (1990s-2000s)
Four Features New in Today’s Clouds

I. **Massive scale.**

II. **On-demand access:** Pay-as-you-go, no upfront commitment.
 - And anyone can access it

III. **Data-intensive Nature:** What was MBs has now become TBs, PBs and XBs.
 - Daily logs, forensics, Web data, etc.
 - Humans have data numbness: Wikipedia (large) compressed is only about 10 GB!

IV. **New Cloud Programming Paradigms:** MapReduce/Hadoop, NoSQL/Cassandra/MongoDB and many others.
 - High in accessibility and ease of programmability
 - Lots of open-source

Combination of one or more of these gives rise to novel and unsolved distributed computing problems in cloud computing.
What is MapReduce?

- Terms are borrowed from Functional Language (e.g., Lisp)

Sum of squares:

- \(\text{map square } \{1 2 3 4\}\)
 - Output: \(1 4 9 16\)
 - [processes each record sequentially and independently]

- \(\text{reduce } + \{1 4 9 16\}\)
 - \((+ 16 (+ 9 (+ 4 1)))\)
 - Output: 30
 - [processes set of all records in batches]

- Let’s consider a sample application: **Wordcount**
 - You are given a huge dataset (e.g., Wikipedia dump or all of Shakespeare’s works) and asked to list the count for each of the words in each of the documents therein
Map

• Process individual records to generate intermediate key/value pairs.

Input <filename, file text>

Welcome Everyone
Hello Everyone

Key
Value
Welcome 1
Everyone 1
Hello 1
Everyone 1
• **Parallelly** Process individual records to generate intermediate key/value pairs.
Map

- **Parallelly Process a large number of individual records to generate intermediate key/value pairs.**
Reduce

• Reduce processes and merges all intermediate values associated per key

<table>
<thead>
<tr>
<th>Key</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welcome</td>
<td>1</td>
</tr>
<tr>
<td>Everyone</td>
<td>1</td>
</tr>
<tr>
<td>Hello</td>
<td>1</td>
</tr>
<tr>
<td>Everyone</td>
<td>1</td>
</tr>
<tr>
<td>Everyone</td>
<td>2</td>
</tr>
<tr>
<td>Hello</td>
<td>1</td>
</tr>
<tr>
<td>Welcome</td>
<td>1</td>
</tr>
</tbody>
</table>
Reduce

- Each key assigned to one Reduce
- Parallelly Processes and merges all intermediate values by partitioning keys

Welcome 1
Everyone 1
Hello 1
Everyone 1

REDUCE TASK 1

REDUCE TASK 2

Everyone 2
Hello 1
Welcome 1

- Popular: Hash partitioning, i.e., key is assigned to
 - reduce # = hash(key)%number of reduce tasks
public static class MapClass extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> {
 private final static IntWritable one =
 new IntWritable(1);
 private Text word = new Text();

 public void map(LongWritable key, Text value,
 OutputCollector<Text, IntWritable> output, Reporter reporter)
 throws IOException {
 String line = value.toString();
 StringTokenizer itr = new StringTokenizer(line);
 while (itr.hasMoreTokens()) {
 word.set(itr.nextToken());
 output.collect(word, one);
 }
 }

public static class ReduceClass extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> {

 public void reduce(
 Text key,
 Iterator<IntWritable> values,
 OutputCollector<Text, IntWritable> output,
 Reporter reporter)
 throws IOException {
 // key is word, values is a list of 1's
 int sum = 0;
 while (values.hasNext()) {
 sum += values.next().get();
 }
 output.collect(key, new IntWritable(sum));
 }
} // Source: http://developer.yahoo.com/hadoop/tutorial/module4.html#wordcount
Hadoop Code - Driver

// Tells Hadoop how to run your Map-Reduce job
public void run (String inputPath, String outputPath)
 throws Exception {
 // The job. WordCount contains MapClass and Reduce.
 JobConf conf = new JobConf(WordCount.class);
 conf.setJobName("mywordcount");
 // The keys are words
 (strings) conf.setOutputKeyClass(Text.class);
 // The values are counts (ints)
 conf.setOutputValueClass(IntWritable.class);
 conf.setMapperClass(MapClass.class);
 conf.setReducerClass(ReduceClass.class);
 FileInputFormat.addInputPath(
 conf, newPath(inputPath));
 FileOutputFormat.setOutputPath(
 conf, newPath(outputPath));
 JobClient.runJob(conf);
} // Source: http://developer.yahoo.com/hadoop/tutorial/module4.html#wordcount
Some Applications of MapReduce

Distributed Grep:
- Input: large set of files
- Output: lines that match pattern

- Map – *Emits a line if it matches the supplied pattern*
- Reduce – *Copies the intermediate data to output*
Reverse Web-Link Graph

– Input: Web graph: tuples (a, b) where (page a → page b)
– Output: For each page, list of pages that link to it

– Map – process web log and for each input <source, target>, it outputs <target, source>
– Reduce - emits <target, list(source)>
Count of URL access frequency

- Input: Log of accessed URLs, e.g., from proxy server
- Output: For each URL, % of total accesses for that URL

- Map – Process web log and outputs <URL, 1>
- Multiple Reducers - Emits <URL, URL_count>
 (So far, like Wordcount. But still need %)
- Chain another MapReduce job after above one
- Map – Processes <URL, URL_count> and outputs <1, (<URL, URL_count>)>
- 1 Reducer – Does two passes. In first pass, sums up all URL_count’s to calculate overall_count. In second pass calculates %’s

*Emits multiple <URL, URL_count/overall_count>
Some Applications of MapReduce

Map task’s output is sorted (e.g., quicksort)
Reduce task’s input is sorted (e.g., mergesort)

Sort

- Input: Series of (key, value) pairs
- Output: Sorted <value>s

- Map – <key, value> → <value, _> (identity)
- Reducer – <key, value> → <key, value> (identity)
- Partitioning function – partition keys across reducers based on ranges (can’t use hashing!)
 - Take data distribution into account to balance reducer tasks
Programming MapReduce

Externally: For user
1. Write a Map program (short), write a Reduce program (short)
2. Specify number of Maps and Reduces (parallelism level)
3. Submit job; wait for result
4. Need to know very little about parallel/distributed programming!

Internally: For the Paradigm and Scheduler
1. Parallelize Map
2. Transfer data from Map to Reduce (shuffle data)
3. Parallelize Reduce
4. Implement Storage for Map input, Map output, Reduce input, and Reduce output
(Ensure that no Reduce starts before all Maps are finished. That is, ensure the barrier between the Map phase and Reduce phase)
Inside MapReduce

For the cloud:

1. Parallelize Map: easy! each map task is independent of the other!
 - All Map output records with same key assigned to same Reduce

2. Transfer data from Map to Reduce:
 - Called Shuffle data
 - All Map output records with same key assigned to same Reduce task
 - use partitioning function, e.g., hash(key)%number of reducers

3. Parallelize Reduce: easy! each reduce task is independent of the other!

4. Implement Storage for Map input, Map output, Reduce input, and Reduce output
 - Map input: from distributed file system
 - Map output: to local disk (at Map node); uses local file system
 - Reduce input: from (multiple) remote disks; uses local file systems
 - Reduce output: to distributed file system

local file system = Linux FS, etc.
distributed file system = GFS (Google File System), HDFS (Hadoop Distributed File System)
Map tasks from DFS

Servers

Reduce tasks

Blocks from DFS

Output files into DFS

(Local write, remote read)

Resource Manager (assigns maps and reduces to servers)
The YARN Scheduler

- Used underneath Hadoop 2.x +
- YARN = Yet Another Resource Negotiator
- Treats each server as a collection of containers
 - Container = fixed CPU + fixed memory (think of Linux cgroups, but even more lightweight)
- Has 3 main components
 - Global Resource Manager (RM)
 - Scheduling
 - Per-server Node Manager (NM)
 - Daemon and server-specific functions
 - Per-application (job) Application Master (AM)
 - Container negotiation with RM and NMs
 - Detecting task failures of that job
YARN: How a job gets a container

In this figure
- 2 servers (A, B)
- 2 jobs (1, 2)
Fault Tolerance

• Server Failure
 – NM heartbeats to RM
 • If server fails: RM times out waiting for next heartbeat, RM lets all affected AMs know, and AMs take appropriate action
 – NM keeps track of each task running at its server
 • If task fails while in-progress, mark the task as idle and restart it
 – AM heartbeats to RM
 • On failure, RM restarts AM, which then syncs it up with its running tasks

• RM Failure
 – Use old checkpoints and bring up secondary RM

• Heartbeats also used to piggyback container requests
 – Avoids extra messages
Slow Servers

Slow tasks are called **Stragglers**

- The slowest task slows the entire job down (why?)
- Due to Bad Disk, Network Bandwidth, CPU, or Memory
- Keep track of “progress” of each task (% done)
- Perform proactive backup (replicated) execution of some straggler tasks
 - A task considered done when its first replica complete (other replicas can then be killed)
 - Approach called **Speculative Execution.**
Locality

- **Locality**
 - Since cloud has hierarchical topology (e.g., racks)
 - For server-fault-tolerance, GFS/HDFS stores 3 replicas of each of chunks (e.g., 64 MB in size)
 - For rack-fault-tolerance, on different racks, e.g., 2 on a rack, 1 on a different rack
 - Mapreduce attempts to schedule a map task on
 1. a machine that contains a replica of corresponding input data, or failing that,
 2. on the same rack as a machine containing the input, or failing that,
 3. Anywhere
 - Note: The 2-1 split of replicas is intended to reduce bandwidth when writing file.
 - Using more racks does not affect overall Mapreduce scheduling performance
That was Hadoop 2.x...

- Hadoop 3.x (new!) over Hadoop 2.x
 - Dockers instead of container
 - Erasure coding instead of 3-way replication
 - Multiple Namenodes instead of one (name resolution)
 - GPU support (for machine learning)
 - Intra-node disk balancing (for repurposed disks)
 - Intra-queue preemption in addition to inter-queue
 - (From https://hortonworks.com/blog/hadoop-3-adds-value-hadoop-2/ (broken) and https://hadoop.apache.org/docs/r3.0.0/)
Mapreduce: Summary

- Mapreduce uses parallelization + aggregation to schedule applications across clusters
- Need to deal with failure
- Plenty of ongoing research work in scheduling and fault-tolerance for Mapreduce and Hadoop
Announcements

• MP Groups **DUE this week Thu Sep 5 @ 5 pm** (see course webpage).
 – Hard deadline, as Engr-IT will create and assign VMs tomorrow!
• Please fill out Student Survey by 9/5 (see course webpage).
• **DO NOT**
 – Change MP groups unless your partner has dropped
 – Leave your MP partner hanging: Both MP partners should contribute equally (we will ask!)
• **MP1 due Sep 15**
 – VMs will be distributed soon (watch Piazza)
 – Demos will be Monday Sep 16 (schedule and details will be posted before that on Piazza)
• **HW1 due Sep 24**
• Check Piazza often! It’s where all the announcements are at!