
CS 425 / ECE 428
Distributed Systems

Fall 2020
Indranil Gupta (Indy)

Lecture 26 A: Distributed Shared Memory
All slides © IG

• Message passing network

So Far …

Process
Process

Process

Processsend message

receive message

2

• Processes could share memory pages instead?
• Makes it convenient to write programs
• Reuse programs

But what if …

Process
Process

Process

Processwrite to page 5

read page 5

Page 0 Page 1 Page 2 … Page N-1
3

• Distributed Shared Memory = processes virtually
share pages

• How do you implement DSM over a message-
passing network?

Distributed Shared Memory

Process
Process

Process

Processwrite to page 5

read page 5

4

1. Message-passing can be implemented over DSM!
– Use a common page as buffer to read/write messages

2. DSM can be implemented over a message-passing
network!

In fact …

Process
Process

Process

Processwrite to page 5

read page 5

5

• Cache maintained at each process
– Cache stores pages accessed recently by that process

• Read/write first goes to cache

DSM over Message-Passing Network

Process

Cache

Process

Cache

Process

Cache Process

Cache

6

• Pages can be mapped in local memory
• When page is present in memory, page hit
• Otherwise, page fault (kernel trap) occurs

– Kernel trap handler: invokes the DSM software
– May contact other processes in DSM group, via multicast

DSM over Message-Passing Network (2)

7

• Owner = Process with latest version of page
• Each page is in either R or W state
• When page in R state, owner has an R copy, but

other processes may also have R copies
– but no W copies exist

• When page is in W state, only owner has a copy

DSM: Invalidate Protocol

8

• Process 1 is owner (O) and has page in R state
• Read from cache. No messages sent.

Process 1 Attempting a Read: Scenario 1

Process 1

page (R)(O)

Process 2 Process 3

Process 4

9

• Process 1 is owner (O) and has page in W state
• Read from cache. No messages sent.

Process 1 Attempting a Read: Scenario 2

Process 1

page (W)(O)

Process 2 Process 3

Process 4

10

• Process 1 is owner (O) and has page in R state
• Other processes also have page in R state
• Read from cache. No messages sent.

Process 1 Attempting a Read: Scenario 3

Process 1

page (R)(O)

Process 2 Process 3

page (R) Process 4

page (R)

11

• Process 1 has page in R state
• Other processes also have page in R state, and someone else is owner
• Read from cache. No messages sent.

Process 1 Attempting a Read: Scenario 4

Process 1

page (R)

Process 2 Process 3

page (R)
Process 4

page (R) (O)

12

• Process 1 does not have page
• Other process(es) has/have page in (R) state
• Ask for a copy of page. Use multicast.
• Mark it as R
• Do Read

Process 1 Attempting a Read: Scenario 5

Process 1
Process 2 Process 3

page (R)
Process 4

page (R) (O)
13

• Process 1 does not have page
• Other process(es) has/have page in (R) state
• Ask for a copy of page. Use multicast.
• Mark it as R
• Do Read

End State: Read Scenario 5

Process 1

page (R)

Process 2 Process 3

page (R)
Process 4

page (R) (O)
14

• Process 1 does not have page
• Another process has page in (W) state
• Ask other process to degrade its copy to (R). Locate process via multicast
• Get page; mark it as R
• Do Read

Process 1 Attempting a Read: Scenario 6

Process 1
Process 2 Process 3

Process 4

page (W) (O)
15

End State: Read Scenario 6

Process 1

page (R)

Process 2 Process 3

Process 4

page (R) (O)

• Process 1 does not have page
• Another process has page in (W) state
• Ask other process to degrade its copy to (R). Locate process via multicast
• Get page; mark it as R
• Do Read

16

• Process 1 is owner (O) and has page in W state
• Write to cache. No messages sent.

Process 1 Attempting a Write: Scenario 1

Process 1

page (W)(O)

Process 2 Process 3

Process 4

17

• Process 1 is owner (O) has page in R state
• Other processes may also have page in R state
• Ask other processes to invalidate their copies of page. Use multicast.
• Mark page as (W).
• Do write.

Process 1 Attempting a Write: Scenario 2

Process 1

page (R)(O)

Process 2 Process 3

page (R) Process 4

page (R)

18

• Process 1 is owner (O) has page in R state
• Other processes may also have page in R state
• Ask other processes to invalidate their copies of page. Use multicast.
• Mark page as (W).
• Do write.

End State: Write Scenario 2

Process 1

page (W)(O)

Process 2 Process 3

page (R) Process 4

page (R)

19

• Process 1 has page in R state
• Other processes may also have page in R state, and someone else is owner
• Ask other processes to invalidate their copies of page. Use multicast.
• Mark page as (W), become owner
• Do write

Process 1 Attempting a Write: Scenario 3

Process 1

page (R)

Process 2 Process 3

page (R) Process 4

page (R) (O)

20

• Process 1 has page in R state
• Other processes may also have page in R state, and someone else is owner
• Ask other processes to invalidate their copies of page. Use multicast.
• Mark page as (W), become owner
• Do write

End State: Write Scenario 3

Process 1

page (W) (O)

Process 2 Process 3

page (R) Process 4

page (R) (O)

21

• Process 1 does not have page
• Other process(es) has/have page in (R) or (W) state
• Ask other processes to invalidate their copies of the page. Use multicast.
• Fetch all copies; use the latest copy; mark it as (W); become owner
• Do Write

Process 1 Attempting a Write: Scenario 4

Process 1
Process 2 Process 3

page (R)
Process 4

page (R) (O)
22

• Process 1 does not have page
• Other process(es) has/have page in (R) or (W) state
• Ask other processes to invalidate their copies of the page. Use multicast.
• Fetch all copies; use the latest copy; mark it as (W); become owner
• Do Write

End State: Write Scenario 4

Process 1

page (W) (O)

Process 2 Process 3

page (R)
Process 4

page (R) (O)
23

• That was the invalidate approach
• If two processes write same page concurrently

– Flip-flopping behavior where one process invalidates the
other

– Lots of network transfer
– Can happen when unrelated variables fall on same page
– Called false sharing

• Need to set page size to capture a process’ locality of
interest

• If page size much larger, then have false sharing
• If page size much smaller, then too many page

transfers => also inefficient

Invalidate Downsides

24

• Instead: could use Update approach
– Multiple processes allowed to have page in W state
– On a write to a page, multicast newly written value (or part of page) to

all other holders of that page
– Other processes can then continue reading and writing page

• Update preferable over Invalidate
– When lots of sharing among processes
– Writes are to small variables
– Page sizes large

• Generally though, Invalidate better and preferred option

An Alternative Approach: Update

25

• Whenever multiple processes share data, consistency
comes into picture

• DSM systems can be implemented with:
– Linearizability
– Sequential Consistency
– Causal Consistency
– Pipelined RAM (FIFO) Consistency
– Eventual Consistency
– (Also other models like Release consistency)
– These should be familiar to you from the course!

• As one goes down this order, speed increases while
consistency gets weaker

Consistency

26

• DSM was very popular over a decade ago
• But may be making a comeback now

– Faster networks like Infiniband + SSDs => Remote
Direct Memory Access (RDMA) becoming popular

– Will this grow? Or stay the same as it is right now?
– Time will tell!

Is it Alive?

27

• DSM = Distributed Shared Memory
– Processes share pages, rather than sending/receiving

messages
– Useful abstraction: allows processes to use same code as if

they were all running over the same OS (multiprocessor OS)

• DSM can be implemented over a message-passing
interface

• Invalidate vs. Update protocols

Summary

28

