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• RPC = Remote Procedure Call
• Proposed by Birrell and Nelson in 1984
• Important abstraction for processes to call functions in 

other processes
• Allows code reuse
• Implemented and used in most distributed systems, 

including cloud computing systems
• Counterpart in Object-based settings is called RMI 

(Remote Method Invocation)

Why RPCs
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• What are the most common causes of an RPC not being acknowledged? Server-side crash, and 
Comcast outage.

• What did the cop say to the copycat murderer who wouldn’t stop? Hey, quit being serially 
equivalent!

• When your roommate hides your half-empty bottle of juice… it’s called pessimistic 
concurrency control via locking.

• How do you define Optimistic Concurrency Control? A situation where you and your partner 
are printing fake money and think you won’t be caught.

• What is the earliest known use of Two Phase Commit? A wedding ceremony, by the priest...

Jokes for this Topic



• Call from one function to another function within the same 
process
– Uses stack to pass arguments and return values
– Accesses objects via pointers (e.g., C) or by reference (e.g., 

Java)
• LPC has exactly-once semantics

– If process is alive, called function executed exactly once

Local Procedure Call (LPC)
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• Call from one function to another function, 
where caller and callee function reside in 
different processes
– Function call crosses a process boundary
– Accesses procedures via global references 

• Can’t use pointers across processes since a reference address in process 
P1 may point to a different object in another process P2

• E.g., Procedure address = IP + port + procedure number

• Similarly, RMI (Remote Method Invocation) in 
Object-based settings

Remote Procedure Call

5



LPCs

P1

int f1()

main()

int f2()

LPC

LPC

6



RPCs

P1

int f1()

main()

int f2()

P2
int f2()

LPC

LPC

RPC



RPCs

P1

int f1()

main()

int f2()

P2
int f2()

LPC

LPC

RPC

Host A



RPCs

P1

int f1()

main()

int f2()

P2
int f2()

LPC

LPC

RPC request message

Host A

Host B
RPC reply message



• Under failures, hard to guarantee exactly-once 
semantics

• Function may not be executed if
– Request (call) message is dropped
– Reply (return) message is dropped
– Called process fails before executing called function
– Called process fails after executing called function
– Hard for caller to distinguish these cases

• Function may be executed multiple times if
– Request (call) message is duplicated

RPC Call Semantics
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• Possible semantics
– At most once semantics (e.g., Java RMI)
– At least once semantics (e.g., Sun RPC)
– Maybe, i.e., best-effort (e.g., CORBA)

Implementing RPC Call Semantics

Retransmit 
request

Filter duplicate 
requests

Re-execute 
function or 
retransmit reply

RPC Semantics

Yes No Re-execute At least once

Yes Yes Retransmit At most once

No NA NA Maybe 11



• Idempotent operations are those that can be 
repeated multiple times, without any side effects

• Examples (x is server-side variable)
– x=1;
– x=(argument) y;

• Non-examples
– x=x+1;
– x=x*2

• Idempotent operations can be used with at-least-
once semantics

Idempotent Operations
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Implementing RPCs

P1
(“client”)

int caller()

P2
(“server”) int callee()

Client stub

Server stub

Communication module

Communication module

Dispatcher
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Client
• Client stub: has same function signature as 

callee() 
– Allows same caller() code to be used for LPC and 

RPC

• Communication Module: Forwards requests 
and replies to appropriate hosts

Server
• Dispatcher: Selects which server stub to 

forward request to
• Server stub: calls callee(), allows it to return 

a value

RPC Components

P1
(“client”)

int caller()

P2
(“server”) int callee()

Client stub

Server stub

Communication module

Communication module

Dispatcher

14



• Programmer only writes code for caller function 
and callee function

• Code for remaining components all generated 
automatically from function signatures (or object 
interfaces in Object-based languages)

– E.g., Sun RPC system: Sun XDR interface representation 
fed into rpcgen compiler

• These components together part of a Middleware 
system

– E.g., CORBA (Common Object Request Brokerage 
Architecture)

– E.g., Sun RPC
– E.g., Java RMI

Generating Code
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• Different architectures use different ways of representing 
data

– Big endian: Hex 12-AC-33 stored with 12 in lowest 
address, then AC in next higher address, then 33 in highest 
address

• IBM z, System 360

– Little endian: Hex 12-AC-33 stored with 33 in lowest 
address, then AC in next higher address, then 12

• Intel

• Caller (and callee) process uses its own platform-
dependent way of storing data

• Middleware has a common data representation 
(CDR)

– Platform-independent

Marshalling
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• Middleware has a common data representation 
(CDR)

– Platform-independent

• Caller process converts arguments into CDR 
format

– Called “Marshalling”

• Callee process extracts arguments from message 
into its own platform-dependent format

– Called “Unmarshalling”

• Return values are marshalled on callee process and 
unmarshalled at caller process

Marshalling (2)
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• Now that we know RPCs, we can use them as a 
building block to understand transactions

Next
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• Series of operations executed by client 
• Each operation is an RPC to a server
• Transaction either 

– completes and commits all its operations 
at server

• Commit = reflect updates on server-side objects

– Or aborts and has no effect on server

Transaction
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Client code:
int transaction_id = openTransaction();
x = server.getFlightAvailability(ABC, 123, date);
if (x > 0)

y = server.bookTicket(ABC, 123, date);
server.putSeat(y, “aisle”);
// commit entire transaction or abort
closeTransaction(transaction_id); 

Example: Transaction

RPCs
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Client code:
int transaction_id = openTransaction();
x = server.getFlightAvailability(ABC, 123, date);
if (x > 0)

y = server.bookTicket(ABC, 123, date);
server.putSeat(y, “aisle”);
// commit entire transaction or abort
closeTransaction(transaction_id); 

Example: Transaction

RPCs
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// read(ABC, 123, date)

// write(ABC, 123, date)

// write(ABC, 123, date)



• Atomicity: All or nothing principle: a transaction should 
either i) complete successfully, so its effects are recorded 
in the server objects; or ii) the transaction has no effect at 
all. 

• Isolation: Need a transaction to be indivisible (atomic) 
from the point of view of other transactions

– No access to intermediate results/states of other transactions
– Free from interference by operations of other transactions

• But… 
• Clients and/or servers might crash
• Transactions could run concurrently, i.e., with multiple 

clients
• Transactions may be distributed, i.e., across multiple 

servers

Atomicity and Isolation
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• Atomicity: All or nothing 
• Consistency: if the server starts in a consistent 

state, the transaction ends the server in a consistent 
state.  

• Isolation: Each transaction must be performed 
without interference from other transactions, i.e., 
non-final effects of a transaction must not be 
visible to other transactions.

• Durability: After a transaction has completed 
successfully, all its effects are saved in permanent 
storage.

ACID Properties for Transactions
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• What could go wrong?

Multiple Clients, One Server

24



Transaction T1 Transaction T2
x = getSeats(ABC123);

x = getSeats(ABC123);
if(x > 1) if(x > 1)

x = x – 1;
write(x, ABC123);

x = x – 1;
write(x, ABC123);

commit
commit

1. Lost Update Problem

At Server: seats = 10

seats = 9

seats = 9

// x = 10

// x = 10

T1’s or T2’s update was lost!
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Transaction T1 Transaction T2
x = getSeats(ABC123);
y = getSeats(ABC789);
write(x-5, ABC123);

x = getSeats(ABC123);
y = getSeats(ABC789);

write(y+5, ABC789);
print(“Total:” x+y);

commit
commit

2. Inconsistent Retrieval Problem

At Server: 
ABC123 = 10
ABC789 = 15

// x = 5, y = 15

T2’s sum is the wrong value!
Should have been “Total: 25”

// Prints “Total: 20”

// ABC123 = 5 now
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• How to prevent transactions from affecting 
each other

Next
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• To prevent transactions from affecting each 
other
– Could execute them one at a time at server
– But reduces number of concurrent transactions
– Transactions per second directly related to 

revenue of companies
• This metric needs to be maximized

• Goal: increase concurrency while maintaining 
correctness (ACID)

Concurrent Transactions
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• An interleaving (say O) of transaction 
operations is serially equivalent iff (if and 
only if):
– There is some ordering (O’) of those 

transactions, one at a time, which
– Gives the same end-result (for all objects and 

transactions) as the original interleaving O
– Where the operations of each transaction occur 

consecutively (in a batch)
• Says: Cannot distinguish end-result of real 

operation O from (fake) serial transaction 
order O’

Serial Equivalence
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• An operation has an effect on
– The server object if it is a write
– The client (returned value) if it is a read

• Two operations are said to be conflicting 
operations, if their combined effect depends on the 
order they are executed

– read(x) and write(x)
– write(x) and read(x)
– write(x) and write(x)
– NOT read(x) and read(x): swapping them doesn’t change 

their effects
– NOT read/write(x) and read/write(y): swapping them ok

Checking for Serial Equivalence
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• Two transactions are serially equivalent if and 
only if all pairs of conflicting operations (pair 
containing one operation from each transaction) 
are executed in the same order (transaction 
order) for all objects (data) they both access.
– Take all pairs of conflict operations, one from T1 and 

one from T2
– If the T1 operation was reflected first on the server, mark 

the pair as “(T1, T2)”, otherwise mark it as “(T2, T1)”
– All pairs should be marked as either “(T1, T2)” or all 

pairs should be marked as “(T2, T1)”.

Checking for Serial Equivalence (2)
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Transaction T1 Transaction T2
x = getSeats(ABC123);

x = getSeats(ABC123);
if(x > 1) if(x > 1)

x = x – 1;
write(x, ABC123);

x = x – 1;
write(x, ABC123);

commit
commit

1. Lost Update Problem – Caught!

At Server: seats = 10

seats = 9

seats = 9

// x = 10

// x = 10

T1’s or T2’s update was lost!

(T1, T2)

(T1, T2)

(T2, T1)
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Transaction T1 Transaction T2
x = getSeats(ABC123);
y = getSeats(ABC789);
write(x-5, ABC123);

x = getSeats(ABC123);
y = getSeats(ABC789);

write(y+5, ABC789);
print(“Total:” x+y);

commit
commit

2. Inconsistent Retrieval Problem – Caught!

At Server: 
ABC123 = 10
ABC789 = 15

// x = 5, y = 15

T2’s sum is the wrong value!
Should have been “Total: 25”

// Prints “Total: 20”

(T1, T2)

(T2, T1)
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• At commit point of a transaction T, check for 
serial equivalence with all other transactions
– Can limit to transactions that overlapped in time 

with T
• If not serially equivalent

– Abort T
– Roll back (undo) any writes that T did to server 

objects

What’s Our Response?
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• Aborting => wasted work
• Can you prevent violations from occurring?

Can We do better?
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• Preventing isolation from being 
violated can be done in two ways
1. Pessimistic concurrency control
2. Optimistic concurrency control

Two Approaches
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• Pessimistic: assume the worst, prevent 
transactions from accessing the same 
object
– E.g., Locking

• Optimistic: assume the best, allow 
transactions to write, but check later
– E.g., Check at commit time, multi-version 

approaches

Pessimistic vs. Optimistic
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• Each object has a lock
• At most one transaction can be inside lock
• Before reading or writing object O, transaction T 

must call lock(O)
– Blocks if another transaction already inside lock

• After entering lock T can read and write O multiple 
times

• When done (or at commit point), T calls unlock(O)
– If other transactions waiting at lock(O), allows one of 

them in
• Sound familiar? (This is Mutual Exclusion!)

Pessimistic: Exclusive Locking
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• More concurrency => more transactions per 
second => more revenue ($$$)

• Real-life workloads have a lot of read-only or 
read-mostly transactions
– Exclusive locking reduces concurrency
– Hint: Ok to allow two transactions to 

concurrently read an object, since read-read is 
not a conflicting pair

Can we improve concurrency?
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• Each object has a lock that can be held in one 
of two modes
– Read mode: multiple transactions allowed in
– Write mode: exclusive lock

• Before first reading O, transaction T calls 
read_lock(O)
– T allowed in only if all transactions inside lock 

for O all entered via read mode
– Not allowed if any transaction inside lock for 

O entered via write mode

Another Approach: Read-Write Locks
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• Before first writing O, call write_lock(O)
– Allowed in only if no other transaction inside 

lock
• If T already holds read_lock(O), and wants to 

write, call write_lock(O) to promote lock 
from read to write mode
– Succeeds only if no other transactions in write 

mode or read mode
– Otherwise, T blocks

• Unlock(O) called by transaction T releases 
any lock on O by T

Read-Write Locks (2)
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• Two-phase locking
– A transaction cannot acquire (or promote) 

any locks after it has started releasing 
locks

– Transaction has two phases
1. Growing phase: only acquires or 

promotes locks
2. Shrinking phase: only releases locks

– Strict two phase locking: releases locks only at 
commit point

Guaranteeing Serial Equivalence With Locks

42



• Proof by contradiction
• Assume two phase locking system where serial equivalence is 

violated for some two transactions T1, T2
• Two facts must then be true:

– (A) For some object O1, there were conflicting operations in T1 and T2 such 
that the time ordering pair is (T1, T2)

– (B) For some object O2, the conflicting operation pair is (T2, T1)

• (A) => T1 released O1’s lock and T2 acquired it after that
=> T1’s shrinking phase is before or overlaps with T2’s growing phase

• Similarly, (B) => T2’s shrinking phase is before or overlaps with 
T1’s growing phase

• But both these cannot be true!

Why Two-phase Locking => Serial Equivalence?
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• Deadlocks!

Downside of Locking
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Transaction T1 Transaction T2
Lock(ABC123);

Lock(ABC789);
x = write(10, ABC123);
Lock(ABC789);

y = write(15, ABC789);
Lock(ABC123);

… …

Downside of Locking – Deadlocks!

// Blocks waiting for T2

// Blocks waiting for T1

T1

T2

Wait for Wait for
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• 3 necessary conditions for a deadlock to occur
1. Some objects are accessed in exclusive lock 

modes
2. Transactions holding locks cannot be 

preempted
3. There is a circular wait (cycle) in the Wait-

for graph
• “Necessary” = if there’s a deadlock, these 

conditions are all definitely true
• (Conditions not sufficient: if they’re present, 

it doesn’t imply a deadlock is present.)

When do Deadlocks Occur?
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1. Lock timeout: abort transaction if lock 
cannot be acquired within timeout
L Expensive; leads to wasted work

2. Deadlock Detection: 
–keep track of Wait-for graph (e.g., via Global 
Snapshot algorithm), and 
–find cycles in it (e.g., periodically)
–If find cycle, there’s a deadlock => Abort one or 
more transactions to break cycle
L Still allows deadlocks to occur

Combating Deadlocks
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3. Deadlock Prevention
• Set up the system so one of the necessary 

conditions is violated
1. Some objects are accessed in exclusive lock modes

• Fix: Allow read-only access to objects

2. Transactions holding locks cannot be preempted
• Fix: Allow preemption of some transactions

3. There is a circular wait (cycle) in the Wait-for graph
• Fix: Lock all objects in the beginning; if fail any, abort transaction 

=> No cycles in Wait-for graph

Combating Deadlocks (2)
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• Can we allow more concurrency?
• Optimistic Concurrency Control

Next
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• Increases concurrency more than pessimistic 
concurrency control

• Increases transactions per second
• For non-transaction systems, increases operations per 

second and lowers latency
• Used in Dropbox, Google apps, Wikipedia, key-value 

stores like Cassandra, Riak, and Amazon’s Dynamo
• Preferable than pessimistic when conflicts are 

expected to be rare
– But still need to ensure conflicts are caught!

Optimistic Concurrency Control
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• Most basic approach
– Write and read objects at will
– Check for serial equivalence at commit time
– If abort, roll back updates made
– An abort may result in other transactions that read 

dirty data, also being aborted
• Any transactions that read from those transactions also 

now need to be aborted
L Cascading aborts

First-cut Approach
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• Assign each transaction an id
• Transaction id determines its position in 

serialization order
• Ensure that for a transaction T, both are true:

1. T’s write to object O allowed only if transactions 
that have read or written O had lower ids than T.

2. T’s read to object O is allowed only if O was last 
written by a transaction with a lower id than T.

• Implemented by maintaining read and write 
timestamps for the object

• If rule violated, abort!
– Can we do better?

Second approach: Timestamp Ordering
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• For each object
– A per-transaction version of the object is maintained

• Marked as tentative versions

– And a committed version
• Each tentative version has a timestamp 

– Some systems maintain both a read timestamp 
and a write timestamp

• On a read or write, find the “correct” tentative 
version to read or write from

– “Correct” based on transaction id, and tries to make 
transactions only read from “immediately previous” 
transactions

Third Approach: Multi-version Concurrency 
Control
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• …in key-value stores…
• … is a form of optimistic concurrency control

– In Cassandra key-value store
– In DynamoDB key-value store
– In Riak key-value store

• But since non-transaction systems, the 
optimistic approach looks different

Eventual Consistency… 
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• Only one version of each data item (key-value 
pair)

• Last-write-wins (LWW)
– Timestamp, typically based on physical time, used to 

determine whether to overwrite
if(new write’s timestamp > current object’s timestamp)

overwrite;
else

do nothing;

• With unsynchronized clocks
– If two writes are close by in time, older write might 

have a newer timestamp, and might win

Eventual Consistency in Cassandra and 
DynamoDB
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• An older version of Riak uses vector clocks! (Should sound 
familiar to you!)

• Implements causal ordering
• Uses vector clocks to detect whether 

1. New write is strictly newer than current value, or
2. If new write conflicts with existing value

• In case (2), a sibling value is created 
– Resolvable by user, or automatically by application (but not by Riak)

• To prevent vector clocks from getting too many entries
– Size-based pruning

• To prevent vector clocks from having entries updated a long-
time ago

– Time-based pruning

Eventual Consistency in Riak Key-value Store
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• RPCs and RMIs
• Transactions
• Serial Equivalence

– Detecting it via conflicting operations

• Pessimistic Concurrency Control: 
locking

• Optimistic Concurrency Control

Summary
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• Next week
– MP3 due 11/3 Sunday, demos next Monday
– HW3 due Nov 12 at 2 pm start of class

Announcements


