
CS 425 / ECE 428
Distributed Systems

Fall 2020
Indranil Gupta (Indy)

Lecture 19-20: RPCs and Concurrency
Control

All slides © IG

• RPC = Remote Procedure Call
• Proposed by Birrell and Nelson in 1984
• Important abstraction for processes to call functions in

other processes
• Allows code reuse
• Implemented and used in most distributed systems,

including cloud computing systems
• Counterpart in Object-based settings is called RMI

(Remote Method Invocation)

Why RPCs

2

• What are the most common causes of an RPC not being acknowledged? Server-side crash, and
Comcast outage.

• What did the cop say to the copycat murderer who wouldn’t stop? Hey, quit being serially
equivalent!

• When your roommate hides your half-empty bottle of juice… it’s called pessimistic
concurrency control via locking.

• How do you define Optimistic Concurrency Control? A situation where you and your partner
are printing fake money and think you won’t be caught.

• What is the earliest known use of Two Phase Commit? A wedding ceremony, by the priest...

Jokes for this Topic

• Call from one function to another function within the same
process
– Uses stack to pass arguments and return values
– Accesses objects via pointers (e.g., C) or by reference (e.g.,

Java)
• LPC has exactly-once semantics

– If process is alive, called function executed exactly once

Local Procedure Call (LPC)

4

• Call from one function to another function,
where caller and callee function reside in
different processes
– Function call crosses a process boundary
– Accesses procedures via global references

• Can’t use pointers across processes since a reference address in process
P1 may point to a different object in another process P2

• E.g., Procedure address = IP + port + procedure number

• Similarly, RMI (Remote Method Invocation) in
Object-based settings

Remote Procedure Call

5

LPCs

P1

int f1()

main()

int f2()

LPC

LPC

6

RPCs

P1

int f1()

main()

int f2()

P2
int f2()

LPC

LPC

RPC

RPCs

P1

int f1()

main()

int f2()

P2
int f2()

LPC

LPC

RPC

Host A

RPCs

P1

int f1()

main()

int f2()

P2
int f2()

LPC

LPC

RPC request message

Host A

Host B
RPC reply message

• Under failures, hard to guarantee exactly-once
semantics

• Function may not be executed if
– Request (call) message is dropped
– Reply (return) message is dropped
– Called process fails before executing called function
– Called process fails after executing called function
– Hard for caller to distinguish these cases

• Function may be executed multiple times if
– Request (call) message is duplicated

RPC Call Semantics

10

• Possible semantics
– At most once semantics (e.g., Java RMI)
– At least once semantics (e.g., Sun RPC)
– Maybe, i.e., best-effort (e.g., CORBA)

Implementing RPC Call Semantics

Retransmit
request

Filter duplicate
requests

Re-execute
function or
retransmit reply

RPC Semantics

Yes No Re-execute At least once

Yes Yes Retransmit At most once

No NA NA Maybe 11

• Idempotent operations are those that can be
repeated multiple times, without any side effects

• Examples (x is server-side variable)
– x=1;
– x=(argument) y;

• Non-examples
– x=x+1;
– x=x*2

• Idempotent operations can be used with at-least-
once semantics

Idempotent Operations

12

Implementing RPCs

P1
(“client”)

int caller()

P2
(“server”) int callee()

Client stub

Server stub

Communication module

Communication module

Dispatcher

13

Client
• Client stub: has same function signature as

callee()
– Allows same caller() code to be used for LPC and

RPC

• Communication Module: Forwards requests
and replies to appropriate hosts

Server
• Dispatcher: Selects which server stub to

forward request to
• Server stub: calls callee(), allows it to return

a value

RPC Components

P1
(“client”)

int caller()

P2
(“server”) int callee()

Client stub

Server stub

Communication module

Communication module

Dispatcher

14

• Programmer only writes code for caller function
and callee function

• Code for remaining components all generated
automatically from function signatures (or object
interfaces in Object-based languages)

– E.g., Sun RPC system: Sun XDR interface representation
fed into rpcgen compiler

• These components together part of a Middleware
system

– E.g., CORBA (Common Object Request Brokerage
Architecture)

– E.g., Sun RPC
– E.g., Java RMI

Generating Code

15

• Different architectures use different ways of representing
data

– Big endian: Hex 12-AC-33 stored with 12 in lowest
address, then AC in next higher address, then 33 in highest
address

• IBM z, System 360

– Little endian: Hex 12-AC-33 stored with 33 in lowest
address, then AC in next higher address, then 12

• Intel

• Caller (and callee) process uses its own platform-
dependent way of storing data

• Middleware has a common data representation
(CDR)

– Platform-independent

Marshalling

16

• Middleware has a common data representation
(CDR)

– Platform-independent

• Caller process converts arguments into CDR
format

– Called “Marshalling”

• Callee process extracts arguments from message
into its own platform-dependent format

– Called “Unmarshalling”

• Return values are marshalled on callee process and
unmarshalled at caller process

Marshalling (2)

17

• Now that we know RPCs, we can use them as a
building block to understand transactions

Next

18

• Series of operations executed by client
• Each operation is an RPC to a server
• Transaction either

– completes and commits all its operations
at server

• Commit = reflect updates on server-side objects

– Or aborts and has no effect on server

Transaction

19

Client code:
int transaction_id = openTransaction();
x = server.getFlightAvailability(ABC, 123, date);
if (x > 0)

y = server.bookTicket(ABC, 123, date);
server.putSeat(y, “aisle”);
// commit entire transaction or abort
closeTransaction(transaction_id);

Example: Transaction

RPCs

20

Client code:
int transaction_id = openTransaction();
x = server.getFlightAvailability(ABC, 123, date);
if (x > 0)

y = server.bookTicket(ABC, 123, date);
server.putSeat(y, “aisle”);
// commit entire transaction or abort
closeTransaction(transaction_id);

Example: Transaction

RPCs

21

// read(ABC, 123, date)

// write(ABC, 123, date)

// write(ABC, 123, date)

• Atomicity: All or nothing principle: a transaction should
either i) complete successfully, so its effects are recorded
in the server objects; or ii) the transaction has no effect at
all.

• Isolation: Need a transaction to be indivisible (atomic)
from the point of view of other transactions

– No access to intermediate results/states of other transactions
– Free from interference by operations of other transactions

• But…
• Clients and/or servers might crash
• Transactions could run concurrently, i.e., with multiple

clients
• Transactions may be distributed, i.e., across multiple

servers

Atomicity and Isolation

22

• Atomicity: All or nothing
• Consistency: if the server starts in a consistent

state, the transaction ends the server in a consistent
state.

• Isolation: Each transaction must be performed
without interference from other transactions, i.e.,
non-final effects of a transaction must not be
visible to other transactions.

• Durability: After a transaction has completed
successfully, all its effects are saved in permanent
storage.

ACID Properties for Transactions

23

• What could go wrong?

Multiple Clients, One Server

24

Transaction T1 Transaction T2
x = getSeats(ABC123);

x = getSeats(ABC123);
if(x > 1) if(x > 1)

x = x – 1;
write(x, ABC123);

x = x – 1;
write(x, ABC123);

commit
commit

1. Lost Update Problem

At Server: seats = 10

seats = 9

seats = 9

// x = 10

// x = 10

T1’s or T2’s update was lost!

25

Transaction T1 Transaction T2
x = getSeats(ABC123);
y = getSeats(ABC789);
write(x-5, ABC123);

x = getSeats(ABC123);
y = getSeats(ABC789);

write(y+5, ABC789);
print(“Total:” x+y);

commit
commit

2. Inconsistent Retrieval Problem

At Server:
ABC123 = 10
ABC789 = 15

// x = 5, y = 15

T2’s sum is the wrong value!
Should have been “Total: 25”

// Prints “Total: 20”

// ABC123 = 5 now

26

• How to prevent transactions from affecting
each other

Next

27

• To prevent transactions from affecting each
other
– Could execute them one at a time at server
– But reduces number of concurrent transactions
– Transactions per second directly related to

revenue of companies
• This metric needs to be maximized

• Goal: increase concurrency while maintaining
correctness (ACID)

Concurrent Transactions

28

• An interleaving (say O) of transaction
operations is serially equivalent iff (if and
only if):
– There is some ordering (O’) of those

transactions, one at a time, which
– Gives the same end-result (for all objects and

transactions) as the original interleaving O
– Where the operations of each transaction occur

consecutively (in a batch)
• Says: Cannot distinguish end-result of real

operation O from (fake) serial transaction
order O’

Serial Equivalence

29

• An operation has an effect on
– The server object if it is a write
– The client (returned value) if it is a read

• Two operations are said to be conflicting
operations, if their combined effect depends on the
order they are executed

– read(x) and write(x)
– write(x) and read(x)
– write(x) and write(x)
– NOT read(x) and read(x): swapping them doesn’t change

their effects
– NOT read/write(x) and read/write(y): swapping them ok

Checking for Serial Equivalence

30

• Two transactions are serially equivalent if and
only if all pairs of conflicting operations (pair
containing one operation from each transaction)
are executed in the same order (transaction
order) for all objects (data) they both access.
– Take all pairs of conflict operations, one from T1 and

one from T2
– If the T1 operation was reflected first on the server, mark

the pair as “(T1, T2)”, otherwise mark it as “(T2, T1)”
– All pairs should be marked as either “(T1, T2)” or all

pairs should be marked as “(T2, T1)”.

Checking for Serial Equivalence (2)

31

Transaction T1 Transaction T2
x = getSeats(ABC123);

x = getSeats(ABC123);
if(x > 1) if(x > 1)

x = x – 1;
write(x, ABC123);

x = x – 1;
write(x, ABC123);

commit
commit

1. Lost Update Problem – Caught!

At Server: seats = 10

seats = 9

seats = 9

// x = 10

// x = 10

T1’s or T2’s update was lost!

(T1, T2)

(T1, T2)

(T2, T1)

32

Transaction T1 Transaction T2
x = getSeats(ABC123);
y = getSeats(ABC789);
write(x-5, ABC123);

x = getSeats(ABC123);
y = getSeats(ABC789);

write(y+5, ABC789);
print(“Total:” x+y);

commit
commit

2. Inconsistent Retrieval Problem – Caught!

At Server:
ABC123 = 10
ABC789 = 15

// x = 5, y = 15

T2’s sum is the wrong value!
Should have been “Total: 25”

// Prints “Total: 20”

(T1, T2)

(T2, T1)

33

• At commit point of a transaction T, check for
serial equivalence with all other transactions
– Can limit to transactions that overlapped in time

with T
• If not serially equivalent

– Abort T
– Roll back (undo) any writes that T did to server

objects

What’s Our Response?

34

• Aborting => wasted work
• Can you prevent violations from occurring?

Can We do better?

35

• Preventing isolation from being
violated can be done in two ways
1. Pessimistic concurrency control
2. Optimistic concurrency control

Two Approaches

36

• Pessimistic: assume the worst, prevent
transactions from accessing the same
object
– E.g., Locking

• Optimistic: assume the best, allow
transactions to write, but check later
– E.g., Check at commit time, multi-version

approaches

Pessimistic vs. Optimistic

37

• Each object has a lock
• At most one transaction can be inside lock
• Before reading or writing object O, transaction T

must call lock(O)
– Blocks if another transaction already inside lock

• After entering lock T can read and write O multiple
times

• When done (or at commit point), T calls unlock(O)
– If other transactions waiting at lock(O), allows one of

them in
• Sound familiar? (This is Mutual Exclusion!)

Pessimistic: Exclusive Locking

38

• More concurrency => more transactions per
second => more revenue ($$$)

• Real-life workloads have a lot of read-only or
read-mostly transactions
– Exclusive locking reduces concurrency
– Hint: Ok to allow two transactions to

concurrently read an object, since read-read is
not a conflicting pair

Can we improve concurrency?

39

• Each object has a lock that can be held in one
of two modes
– Read mode: multiple transactions allowed in
– Write mode: exclusive lock

• Before first reading O, transaction T calls
read_lock(O)
– T allowed in only if all transactions inside lock

for O all entered via read mode
– Not allowed if any transaction inside lock for

O entered via write mode

Another Approach: Read-Write Locks

40

• Before first writing O, call write_lock(O)
– Allowed in only if no other transaction inside

lock
• If T already holds read_lock(O), and wants to

write, call write_lock(O) to promote lock
from read to write mode
– Succeeds only if no other transactions in write

mode or read mode
– Otherwise, T blocks

• Unlock(O) called by transaction T releases
any lock on O by T

Read-Write Locks (2)

41

• Two-phase locking
– A transaction cannot acquire (or promote)

any locks after it has started releasing
locks

– Transaction has two phases
1. Growing phase: only acquires or

promotes locks
2. Shrinking phase: only releases locks

– Strict two phase locking: releases locks only at
commit point

Guaranteeing Serial Equivalence With Locks

42

• Proof by contradiction
• Assume two phase locking system where serial equivalence is

violated for some two transactions T1, T2
• Two facts must then be true:

– (A) For some object O1, there were conflicting operations in T1 and T2 such
that the time ordering pair is (T1, T2)

– (B) For some object O2, the conflicting operation pair is (T2, T1)

• (A) => T1 released O1’s lock and T2 acquired it after that
=> T1’s shrinking phase is before or overlaps with T2’s growing phase

• Similarly, (B) => T2’s shrinking phase is before or overlaps with
T1’s growing phase

• But both these cannot be true!

Why Two-phase Locking => Serial Equivalence?

43

• Deadlocks!

Downside of Locking

44

Transaction T1 Transaction T2
Lock(ABC123);

Lock(ABC789);
x = write(10, ABC123);
Lock(ABC789);

y = write(15, ABC789);
Lock(ABC123);

… …

Downside of Locking – Deadlocks!

// Blocks waiting for T2

// Blocks waiting for T1

T1

T2

Wait for Wait for

45

• 3 necessary conditions for a deadlock to occur
1. Some objects are accessed in exclusive lock

modes
2. Transactions holding locks cannot be

preempted
3. There is a circular wait (cycle) in the Wait-

for graph
• “Necessary” = if there’s a deadlock, these

conditions are all definitely true
• (Conditions not sufficient: if they’re present,

it doesn’t imply a deadlock is present.)

When do Deadlocks Occur?

46

1. Lock timeout: abort transaction if lock
cannot be acquired within timeout
L Expensive; leads to wasted work

2. Deadlock Detection:
–keep track of Wait-for graph (e.g., via Global
Snapshot algorithm), and
–find cycles in it (e.g., periodically)
–If find cycle, there’s a deadlock => Abort one or
more transactions to break cycle
L Still allows deadlocks to occur

Combating Deadlocks

47

3. Deadlock Prevention
• Set up the system so one of the necessary

conditions is violated
1. Some objects are accessed in exclusive lock modes

• Fix: Allow read-only access to objects

2. Transactions holding locks cannot be preempted
• Fix: Allow preemption of some transactions

3. There is a circular wait (cycle) in the Wait-for graph
• Fix: Lock all objects in the beginning; if fail any, abort transaction

=> No cycles in Wait-for graph

Combating Deadlocks (2)

48

• Can we allow more concurrency?
• Optimistic Concurrency Control

Next

49

• Increases concurrency more than pessimistic
concurrency control

• Increases transactions per second
• For non-transaction systems, increases operations per

second and lowers latency
• Used in Dropbox, Google apps, Wikipedia, key-value

stores like Cassandra, Riak, and Amazon’s Dynamo
• Preferable than pessimistic when conflicts are

expected to be rare
– But still need to ensure conflicts are caught!

Optimistic Concurrency Control

50

• Most basic approach
– Write and read objects at will
– Check for serial equivalence at commit time
– If abort, roll back updates made
– An abort may result in other transactions that read

dirty data, also being aborted
• Any transactions that read from those transactions also

now need to be aborted
L Cascading aborts

First-cut Approach

51

• Assign each transaction an id
• Transaction id determines its position in

serialization order
• Ensure that for a transaction T, both are true:

1. T’s write to object O allowed only if transactions
that have read or written O had lower ids than T.

2. T’s read to object O is allowed only if O was last
written by a transaction with a lower id than T.

• Implemented by maintaining read and write
timestamps for the object

• If rule violated, abort!
– Can we do better?

Second approach: Timestamp Ordering

52

• For each object
– A per-transaction version of the object is maintained

• Marked as tentative versions

– And a committed version
• Each tentative version has a timestamp

– Some systems maintain both a read timestamp
and a write timestamp

• On a read or write, find the “correct” tentative
version to read or write from

– “Correct” based on transaction id, and tries to make
transactions only read from “immediately previous”
transactions

Third Approach: Multi-version Concurrency
Control

53

• …in key-value stores…
• … is a form of optimistic concurrency control

– In Cassandra key-value store
– In DynamoDB key-value store
– In Riak key-value store

• But since non-transaction systems, the
optimistic approach looks different

Eventual Consistency…

54

• Only one version of each data item (key-value
pair)

• Last-write-wins (LWW)
– Timestamp, typically based on physical time, used to

determine whether to overwrite
if(new write’s timestamp > current object’s timestamp)

overwrite;
else

do nothing;

• With unsynchronized clocks
– If two writes are close by in time, older write might

have a newer timestamp, and might win

Eventual Consistency in Cassandra and
DynamoDB

55

• An older version of Riak uses vector clocks! (Should sound
familiar to you!)

• Implements causal ordering
• Uses vector clocks to detect whether

1. New write is strictly newer than current value, or
2. If new write conflicts with existing value

• In case (2), a sibling value is created
– Resolvable by user, or automatically by application (but not by Riak)

• To prevent vector clocks from getting too many entries
– Size-based pruning

• To prevent vector clocks from having entries updated a long-
time ago

– Time-based pruning

Eventual Consistency in Riak Key-value Store

56

• RPCs and RMIs
• Transactions
• Serial Equivalence

– Detecting it via conflicting operations

• Pessimistic Concurrency Control:
locking

• Optimistic Concurrency Control

Summary

57

• Next week
– MP3 due 11/3 Sunday, demos next Monday
– HW3 due Nov 12 at 2 pm start of class

Announcements

