
CS 425 / ECE 428 
Distributed Systems

Fall 2020
Indranil Gupta (Indy)

Lecture 13-A: Impossibility of Consensus

All slides © IG



Jokes for this Topic

• (You will get these jokes as you start understanding the topic)

• We have two jokes about distributed systems, but we can’t decide 
which one to tell.

• Why was the island nation’s parliament indecisive? Because it ran 
Paxos, and using a Raft didn’t really help.

(All jokes © unless otherwise mentioned. Apologies for bad jokes!).
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Exercises

1. Is the consensus problem the same as majority voting? If not, what are the differences?
2. What is a trivial solution to consensus?
3. Why is consensus solvable for synchronous systems?.
4. . A synchronous consensus algorithm with N=5 processes has only 2 rounds, but can 

have up to 2 failures. Show how this algorithm fails to solve consensus.
5. Why does the FLP proof treat the network as a giant “buffer”?
6. What is a commutative schedule?
7. What is the lattice of states and why is it important in the FLP proof?
8. How does FLP show that given a bivalent state, one can reach another bivalent state?
9. In FLP’s last lemma, why is it ok to prevent process p from taking any steps for a while, 

or event e from occurring for a while?
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Give it a thought

Have you ever wondered why distributed 
server vendors always only offer solutions 
that promise five-9’s reliability, seven-9’s 
reliability, but never 100%  reliable?

The fault does not lie with the companies 
themselves, or the worthlessness of 
humanity.

The fault lies in the impossibility of consensus
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A group of servers attempting:
• Make sure that all of them receive the same 

updates in the same order as each other
• To keep their own local lists where they know 

about each other, and when anyone leaves or 
fails, everyone is updated simultaneously

• Elect a leader among them, and let everyone 
in the group know about it

• To ensure mutually exclusive (one process at a 
time only) access to a critical resource like a 
file

What is common to all of these?
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A group of servers attempting:
• Make sure that all of them receive the same updates 

in the same order as each other [Reliable Multicast]
• To keep their own local lists where they know about 

each other, and when anyone leaves or fails, 
everyone is updated simultaneously 
[Membership/Failure Detection]

• Elect a leader among them, and let everyone in the 
group know about it [Leader Election]

• To ensure mutually exclusive (one process at a time 
only) access to a critical resource like a file [Mutual 
Exclusion]

What is common to all of these?
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• Let’s call each server a “process” (think of the 
daemon at each server)

• All of these were groups of processes attempting 
to coordinate with each other and reach 
agreement on the value of something
• The ordering of messages
• The up/down status of a suspected failed process
• Who the leader is
• Who has access to the critical resource

• All of these are related to the Consensus problem

So what is common?
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Formal problem statement

• N processes

• Each process p has 

input variable xp : initially either 0 or 1

output variable yp : initially b (can be changed only once)

• Consensus problem: design a protocol so that at the end, 
either:

1. All processes set their output variables to 0 (all-0’s)

2. Or All processes set their output variables to 1 (all-1’s)

What is Consensus?
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• Every process contributes a value
• Goal is to have all processes decide same (some) value

• Decision once made can’t be changed

• There might be other constraints 
• Validity = if everyone proposes same value, then that’s 

what’s decided
• Integrity = decided value must have been proposed by some 

process
• Non-triviality = there is at least one initial system state that 

leads to each of the all-0’s or all-1’s outcomes

What is Consensus? (2)
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• Many problems in distributed systems are 
equivalent to (or harder than) consensus!
• Perfect Failure Detection
• Leader election (select exactly one leader, and 

every alive process knows about it)
• Agreement (harder than consensus)

• So consensus is a very important problem, 
and solving it would be really useful!

• So, is there a solution to Consensus?

Why is it Important?
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• Synchronous System Model and 
Asynchronous System Model

• Synchronous Distributed System
• Each message is received within bounded 

time
• Drift of each process’ local clock has a known 

bound
• Each step in a process takes lb < time < ub
E.g., A collection of processors connected by a 

communication bus, e.g., a Cray 
supercomputer or a multicore machine

Two Different Models of Distributed Systems
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• Asynchronous Distributed System
• No bounds on process execution
• The drift rate of a clock is arbitrary 
• No bounds on message transmission delays
E.g., The Internet is an asynchronous distributed 

system, so are ad-hoc and sensor networks
q This is a more general (and thus challenging)

model than the synchronous system model. A 
protocol for an asynchronous system will also 
work for a synchronous system (but not vice-versa)

Asynchronous System Model
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• In the synchronous system model
• Consensus is solvable

• In the asynchronous system model
• Consensus is impossible to solve
• Whatever protocol/algorithm you suggest, there is always a worst-

case possible execution (with failures and message delays) that 
prevents the system from reaching consensus

• Powerful result (see the FLP proof)
• Subsequently, safe or probabilistic solutions have become quite 

popular to consensus or related problems. 

Possible or Not

15



• Uh, what’s the system model? 
(assumptions!)

• Synchronous system: bounds on
• Message delays
• Upper bound on clock drift rates
• Max time for each process step
e.g., multiprocessor (common clock across 

processors)
• Processes can fail by stopping (crash-stop 

or crash failures)

Let’s Try to Solve Consensus!
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- For a system with at most f processes crashing
- All processes are synchronized and operate in “rounds” of 

time. Round length >> max transmission delay.
- the algorithm proceeds in f+1 rounds (with timeout), using 

reliable communication to all members 
- Valuesr

i: the set of proposed values known to pi at the 
beginning of round r.

Consensus in Synchronous Systems

Round 1 Round 2 Round 3
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- For a system with at most f processes crashing
- All processes are synchronized and operate in “rounds” of time
- the algorithm proceeds in f+1 rounds (with timeout), using reliable communication 

to all members. Round length >> max transmission delay.
- Valuesr

i: the set of proposed values known to pi at the beginning of round r.
- Initially Values0

i = {} ; Values1
i = {vi}

for round = 1 to f+1 do
multicast (Values ri – Valuesr-1

i) // iterate through processes, send each a message
Values r+1

i ß Valuesr
i

for each Vj received 
Values r+1

i = Values r+1
i È Vj

end
end

di = minimum(Values f+1
i) // consistent minimum based on say, id (not minimum value)

Possible to achieve!
Consensus in Synchronous System
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• After f+1 rounds, all non-faulty processes would have received the 
same set of Values. Proof by contradiction.

• Assume that two non-faulty processes, say pi and pj , differ in their final 
set of values (i.e., after f+1 rounds)

• Assume that pi possesses a value v that pj does not possess.
à pi must have received v in the very last round 

à Else, pi would have sent v to pj in that last round 
à So, in the last round: a third process, pk, must have sent v to pi, but then crashed 

before sending v to pj.
à Similarly, a fourth process sending v in the last-but-one round must have 

crashed; otherwise, both pk and pj should have received v.
à Proceeding in this way, we infer at least one (unique) crash in each of the 

preceding rounds. 
à This means a total of f+1 crashes, while we have assumed at most f crashes can 

occur => contradiction.

Why does the Algorithm work?
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• Impossible to achieve!

• Proved in a now-famous result by 
Fischer, Lynch and Patterson, 1983  
(FLP)
• Stopped many distributed system designers 

dead in their tracks
• A lot of claims of “reliability” vanished 

overnight

Consensus in an Asynchronous System
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Asynchronous system: All message delays and processing delays can 
be arbitrarily long or short.

Consensus:

• Each process p has a state
• program counter, registers, stack, local variables 

• input register xp : initially either 0 or 1

• output register yp : initially b (undecided)

• Consensus Problem: design a protocol so that either
• all processes set their output variables to 0 (all-0’s)

• Or all processes set their output variables to 1 (all-1’s)

• Non-triviality: at least one initial system state leads to each of the 
above two outcomes

Recall
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• For impossibility proof, OK to consider 

1. more restrictive system model, and 

2. easier problem
• Why is this is ok?

Proof Setup
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p p’

Global Message Buffer

send(p’,m)
receive(p’)

may return null

“Network”

Network
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• State of a process
• Configuration=global state. Collection of states, 

one for each process; alongside state of the global 
buffer.

• Each Event (different from Lamport events) is 
atomic and consists of three steps
• receipt of a message by a process (say p)
• processing of message (may change recipient’s state)
• sending out of all necessary messages by p

• Schedule: sequence of events

States
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C

C’

C’’

Event e’=(p’,m’)

Event e’’=(p’’,m’’)

Configuration C

Schedule s=(e’,e’’)

C

C’’

Equivalent 25



C

C’

C’’

Schedule s1

Schedule s2

s2

s1

s1 and s2 involve
disjoint sets of 
receiving processes, 
and are each applicable
on C

Disjoint schedules are 
commutative 

Lemma 1
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Easier Consensus Problem: 
some process eventually 
sets yp to be 0 or 1

Only one process crashes –
we’re free to choose 
which one

Easier Consensus Problem
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• Let config. C have a set of decision values V 
reachable from it
• If |V| = 2, config. C is bivalent
• If |V| = 1, config. C is 0-valent or 1-valent, as is 

the case

• Bivalent means outcome is unpredictable

Easier Consensus Problem
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1. There exists an initial 
configuration that is bivalent

2. Starting from a bivalent 
config., there is always 
another bivalent config. that 
is reachable

What the FLP proof shows
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Some initial configuration is bivalent

•Suppose all initial configurations were either 0-valent or 1-valent.
•If there are N processes, there are 2N possible initial configurations
•Place all configurations side-by-side (in a lattice), where adjacent

configurations differ in initial xp value for exactly one process.

1         1          0        1        0         1

•There has to be some adjacent pair of 
1-valent and 0-valent configs.

Lemma 2
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1         1          0        1        0         1

•There has to be some adjacent pair of 1-valent and 0-valent configs.
•Let the process p, that has a different state across these two configs., be

the process that has crashed (i.e., is silent throughout)

Both initial configs. will lead to 
the same config. for the same 
sequence of events

Therefore, both these initial 
configs. are bivalent when there 
is such a failure

Lemma 2 Some initial configuration is bivalent
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What we’ll show

1. There exists an initial 
configuration that is bivalent

2. Starting from a bivalent 
config., there is always 
another bivalent config. that 
is reachable
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Lemma 3 Starting from a bivalent config., there is always 
another bivalent config. that is reachable
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A bivalent initial config.
let e=(p,m) be some event

applicable to the initial config.

Let C be the set of configs. reachable 
without applying e

Lemma 3
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A bivalent initial config.

Let C be the set of configs. reachable 
without applying e

e       e       e           e        e Let D be the set of configs. 
obtained by applying e to some 
config. in C

let e=(p,m) be some event
applicable to the initial config.

Lemma 3
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D

C

e       e       e           e        e

bivalent

[don’t apply 
event e=(p,m)]

Lemma 3
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Claim. Set D contains a bivalent config.
Proof. By contradiction. That is, 

suppose D has only 0- and 1- valent 
states (and no bivalent ones)

• There are states D0 and D1 in D, and 
C0 and C1 in C such that 

– D0 is 0-valent, D1 is 1-valent
– D0=C0 foll. by e=(p,m)
– D1=C1 foll. by e=(p,m)
– And C1 = C0 followed by some event 

e’=(p’,m’)
(why?)

D

C

e       e       e           e        e

bivalent

[don’t apply 
event e=(p,m)]
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Proof. (contd.)

• Case I: p’ is not p

• Case II: p’ same as p

D

C

e       e       e           e        e

bivalent

[don’t apply 
event e=(p,m)]

C0

D1

D0 C1

e

ee’

e’

Why? (Lemma 1)
But D0 is then bivalent!
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Proof. (contd.)

• Case I: p’ is not p

• Case II: p’ same as p

D

C

e       e       e           e        e

bivalent

[don’t apply 
event e=(p,m)]

C0

D1

D0
C1

e e’

A

E0

e

sch. s

sch. s

E1

sch. s

(e’,e)

e

sch. s
• finite
• deciding run from C0
• p takes no steps

But A is then bivalent! 39



Lemma 3 Starting from a bivalent config., there is always 
another bivalent config. that is reachable
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• Lemma 2: There exists an initial configuration that is 
bivalent

• Lemma 3: Starting from a bivalent config., there is 
always another bivalent config. that is reachable

• Theorem (Impossibility of Consensus): There is 
always a run of events in an asynchronous distributed 
system such that the group of processes never reach 
consensus (i.e., stays bivalent all the time)

Putting it all Together
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• Consensus Problem 
• Agreement in distributed systems
• Solution exists in synchronous system model (e.g., 

supercomputer)
• Impossible to solve in an asynchronous system 

(e.g., Internet, Web)
• Key idea: with even one (adversarial) crash-stop process 

failure, there are always sequences of events for the 
system to decide any which way

• Holds true regardless of whatever algorithm you choose!
• FLP impossibility proof

• One of the most fundamental results in 
distributed systems

Summary
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