What’s a Network/Graph?

• Has **vertices** (i.e., nodes)
 – E.g., in the Facebook graph, each user = a vertex (or a node)

• Has **edges** that connect pairs of vertices
 – E.g., in the Facebook graph, a friend relationship = an edge
Lots of Graphs/networks

- Large graphs/network are all around us
 - Internet: vertices are routers/switches and edges are links
 - World Wide Web: vertices are webpages, and edges are URL links on a webpage pointing to another webpage
 - Called “Directed” graph as edges are uni-directional
 - Social networks: Facebook, Twitter, LinkedIn
 - Biological networks: DNA interaction graphs, ecosystem graphs, etc.
• **Structural:** human population has ~7 B nodes, there are millions of computers on the Internet...
• **Evolution:** people make new friends all the time, ISP’s change hands all the time...
• **Diversity:** some people are more popular, some friendships are more important...
• **Node Complexity:** Endpoints have different CPUs, Windows is a complicated OS, Mobile devices ...
• **Emergent phenomena:** simple end behavior → leads to complex system-wide behavior.
 – If we understand the basics of climate change, why is the weather so unpredictable?
Network Structure

• “Six degrees of Kevin Bacon”
• Milgram’s experiment in 1970

• Recent work on shows similarities between the structures of: Internet, WWW, human social networks, p2p overlays, Electric power grid, protein networks
• These networks have “evolved naturally”
• Many of these are “small world networks”
Two Important Network Properties

1. **Clustering Coefficient**: CC
 \[\text{Pr}(A-B\text{ edge, given an A-C edge and a C-B edge}) \]

2. **Path Length** of shortest path
 - Extended Ring graph: high CC, long paths
 - Random graph: low CC, short paths
 - Small World Networks: high CC, short paths
Deriving Small-world Graphs

Convert more and more edges to point to random nodes

- **Path Length**
- **Clustering Coefficient**

1. **Extended Ring graph**
2. **Small World Networks**
3. **Random Graph**
Most “natural evolved” networks are small world

- Network of actors \(\rightarrow\) six degrees of Kevin Bacon
- Network of humans \(\rightarrow\) Milgram’s experiment
- Co-authorship network \(\rightarrow\) “Erdos Number”
- World Wide Web, the Internet, …

Many of these networks also “grow incrementally”

“Preferential” model of growth

- When adding a vertex to graph, connect it to existing vertex \(v\) with probability proportional to \(\text{num_neighbors}(v)\)
Degrees

Degree of a vertex = number of its immediate neighbor vertices

Degree distribution – what is the probability of a given node having k edges (neighbors, friends, …)

- Regular graph: all nodes same degree
- **Gaussian**
- Random graph: **Exponential** $e^{-k.c}$
- Power law: $k^{-\alpha}$
Power Law Graphs

Number of nodes with degree k is $\sim k^{-\alpha}$

- Power law
- Exponential
- Heavy tailed
A lot of small world networks are power law graphs
 - Internet backbone, telephone call graph, protein networks
 - WWW is a small-world graph and also a power-law graph with $\alpha=2.1-2.4$
 - Gnutella p2p system network has heavy-tailed degree distribution

Power law networks also called *scale-free*
 - Gnutella has 3.4 edges per vertex, *independent of scale* (i.e., *number of vertices*)
Small-world ≠ Power-Law

• Not all small world networks are power law
 – E.g., co-author networks
• Not all power-law networks are small world
 – E.g., Disconnected power-law networks
Most nodes have small degree, but a few nodes have high degree

Attacks on small world networks
• Killing a large number of randomly chosen nodes does not disconnect graph
• Killing a few high-degree nodes will disconnect graph

“A few (of the many thousand) nutrients are very important to your body”
“The Electric Grid is very vulnerable to attacks”
• Build shortest-path routes between every pair of vertices
• => Most of these routes will pass via the few high-degree vertices in the graphs
 – => High-degree vertices are heavily overloaded
 – High-degree vertices more likely to suffer congestions or crash
• Same phenomenon in Electric power grid
• Solution may be to introduce some randomness in path selection; don’t always use shortest path
• Networks (graphs) are all around us
 – Man-made networks like Internet, WWW, p2p
 – Natural networks like protein networks, human social network
• Yet, many of these have common characteristics
 – Small-world
 – Power-law
• Useful to know this: when designing distributed systems that run on such networks
 – Can better predict how these networks might behave
Announcements

- HW4, MP4 released: Start NOW
 - Last HW and MP (yay!)