“A Cloudy History of Time”

- The first datacenters!
- Timesharing Companies & Data Processing Industry
- PCs (not distributed!)
- Grids
- Clusters
- Clouds and datacenters
- Peer to peer systems
- 2012
"A Cloudy History of Time"

Clouds Grids (1980s-2000s):
- GriPhyN (1970s-80s)
- Open Science Grid and Lambda Rail (2000s)
- Globus & other standards (1990s-2000s)

Timesharing Industry (1975):
- Market Share: Honeywell 34%, IBM 15%, Xerox 10%, CDC 10%, DEC 10%, UNIVAC 10%
- Honeywell 6000 & 635, IBM 370/168, Xerox 940 & Sigma 9, DEC PDP-10, UNIVAC 1108

Data Processing Industry
- 1968: $70 M, 1978: $3.15 Billion

First large datacenters: ENIAC, ORDVAC, ILLIAC
- Many used vacuum tubes and mechanical relays

Berkeley NOW Project
- Supercomputers
- Server Farms (e.g., Oceano)

P2P Systems (90s-00s):
- Many Millions of users
- Many GB per day

Grids (1980s-2000s):
- GriPhyN (1970s-80s)
- Open Science Grid and Lambda Rail (2000s)
- Globus & other standards (1990s-2000s)
Four Features New in Today’s Clouds

I. Massive scale.

II. On-demand access: Pay-as-you-go, no upfront commitment.
 – And anyone can access it

III. Data-intensive Nature: What was MBs has now become TBs, PBs and XBs.
 – Daily logs, forensics, Web data, etc.
 – Humans have data numbness: Wikipedia (large) compressed is only about 10 GB!

IV. New Cloud Programming Paradigms: MapReduce/Hadoop, NoSQL/Cassandra/MongoDB and many others.
 – High in accessibility and ease of programmability
 – Lots of open-source

Combination of one or more of these gives rise to novel and unsolved distributed computing problems in cloud computing.
What is MapReduce?

- Terms are borrowed from Functional Language (e.g., Lisp)

Sum of squares:

- \((\text{map square } (1 \ 2 \ 3 \ 4))\)
 - Output: \((1 \ 4 \ 9 \ 16)\)

 [processes each record sequentially and independently]

- \((\text{reduce } + \ (1 \ 4 \ 9 \ 16))\)
 - \((+ 16 (+ 9 (+ 4 1))))\)
 - Output: 30

 [processes set of all records in batches]

- Let’s consider a sample application: Wordcount
 - You are given a huge dataset (e.g., Wikipedia dump or all of Shakespeare’s works) and asked to list the count for each of the words in each of the documents therein
Map

• Process individual records to generate intermediate key/value pairs.

Input <filename, file text>

Key	Value
Welcome | 1
Everyone | 1
Hello | 1
Everyone | 1
• **Parallelly** Process individual records to generate intermediate key/value pairs.
• **Parallelly** Process a large number of individual records to generate intermediate key/value pairs.
Reduce

• Reduce processes and merges all intermediate values associated **per key**
Reduce

- Each key assigned to one Reduce
- Parallelly Processes and merges all intermediate values by partitioning keys

Welcome 1
Everyone 1
Hello 1
Everyone 1

- Popular: Hash partitioning, i.e., key is assigned to
 - reduce # = hash(key)\%number of reduce tasks
public static class MapClass extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> {
 private final static IntWritable one =
 new IntWritable(1);
 private Text word = new Text();

 public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) {
 // key is empty, value is the line
 String line = value.toString();
 StringTokenizer itr = new StringTokenizer(line);
 while (itr.hasMoreTokens()) {
 word.set(itr.nextToken());
 output.collect(word, one);
 }
 }
} // Source: http://developer.yahoo.com/hadoop/tutorial/module4.html#wordcount
public static class ReduceClass extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> {
 public void reduce(Text key,
 Iterator<IntWritable> values,
 OutputCollector<Text, IntWritable> output,
 Reporter reporter)
 throws IOException {
 // key is word, values is a list of 1’s
 int sum = 0;
 while (values.hasNext()) {
 sum += values.next().get();
 }
 output.collect(key, new IntWritable(sum));
 }
} // Source: http://developer.yahoo.com/hadoop/tutorial/module4.html#wordcount
Hadoop Code - Driver

// Tells Hadoop how to run your Map-Reduce job
public void run(String inputPath, String outputPath) throws Exception {
 // The job. WordCount contains MapClass and Reduce.
 JobConf conf = new JobConf(WordCount.class);
 conf.setJobName("mywordcount");
 // The keys are words
 (strings) conf.setOutputKeyClass(Text.class);
 // The values are counts (ints)
 conf.setOutputValueClass(IntWritable.class);
 conf.setMapperClass(MapClass.class);
 conf.setReducerClass(ReduceClass.class);
 FileInputFormat.addInputPath(conf, newPath(inputPath));
 FileOutputFormat.setOutputPath(conf, new Path(outputPath));
 JobClient.runJob(conf);
} // Source: http://developer.yahoo.com/hadoop/tutorial/module4.html#wordcount
Some Applications of MapReduce

Distributed Grep:

– Input: large set of files
– Output: lines that match pattern

– Map – *Emits a line if it matches the supplied pattern*
– Reduce – *Copies the intermediate data to output*
Some Applications of MapReduce

(2)

Reverse Web-Link Graph

– Input: Web graph: tuples (a, b) where (page a \(\rightarrow\) page b)
– Output: For each page, list of pages that link to it

– Map – process web log and for each input <source, target>, it outputs <target, source>
– Reduce - emits <target, list(source)>
Some Applications of MapReduce

(3)

Count of URL access frequency

– Input: Log of accessed URLs, e.g., from proxy server
– Output: For each URL, % of total accesses for that URL

– Map – Process web log and outputs <URL, 1>
– Multiple Reducers - Emits <URL, URL_count>
 (So far, like Wordcount. But still need %)
– Chain another MapReduce job after above one
– Map – Processes <URL, URL_count> and outputs <1, (<URL, URL_count>)>
– 1 Reducer – Does two passes. In first pass, sums up all URL_count’s to calculate overall_count. In second pass calculates %’s

Emits multiple <URL, URL_count/overall_count>
Some Applications of MapReduce

(4)

Map task’s output is sorted (e.g., quicksort)
Reduce task’s input is sorted (e.g., mergesort)

Sort

– Input: Series of (key, value) pairs
– Output: Sorted <value>s

– Map – <key, value> → <value, _> (identity)
– Reducer – <key, value> → <key, value> (identity)
– Partitioning function – partition keys across reducers based on ranges (can’t use hashing!)
 • Take data distribution into account to balance reducer tasks
Programming MapReduce

Externally: For user

1. Write a Map program (short), write a Reduce program (short)
2. Specify number of Maps and Reduces (parallelism level)
3. Submit job; wait for result
4. Need to know very little about parallel/distributed programming!

Internally: For the Paradigm and Scheduler

1. Parallelize Map
2. Transfer data from Map to Reduce (shuffle data)
3. Parallelize Reduce
4. Implement Storage for Map input, Map output, Reduce input, and Reduce output
 (Ensure that no Reduce starts before all Maps are finished. That is, ensure the barrier between the Map phase and Reduce phase)
Inside MapReduce

For the cloud:

1. Parallelize Map: easy! each map task is independent of the other!
 • All Map output records with same key assigned to same Reduce

2. Transfer data from Map to Reduce:
 • Called Shuffle data
 • All Map output records with same key assigned to same Reduce task
 • use partitioning function, e.g., hash(key)%number of reducers

3. Parallelize Reduce: easy! each reduce task is independent of the other!

4. Implement Storage for Map input, Map output, Reduce input, and Reduce output
 • Map input: from distributed file system
 • Map output: to local disk (at Map node); uses local file system
 • Reduce input: from (multiple) remote disks; uses local file systems
 • Reduce output: to distributed file system

local file system = Linux FS, etc.
distributed file system = GFS (Google File System), HDFS (Hadoop Distributed File System)
Map tasks

Reduce tasks

Output files into DFS

Blocks from DFS

Servers

(Local write, remote read)

Servers

Resource Manager (assigns maps and reduces to servers)
The YARN Scheduler

• Used underneath Hadoop 2.x +
• YARN = Yet Another Resource Negotiator
• Treats each server as a collection of containers
 – Container = fixed CPU + fixed memory (think of Linux cgroups, but even more lightweight)
• Has 3 main components
 – Global Resource Manager (RM)
 • Scheduling
 – Per-server Node Manager (NM)
 • Daemon and server-specific functions
 – Per-application (job) Application Master (AM)
 • Container negotiation with RM and NMs
 • Detecting task failures of that job
YARN: How a job gets a container

In this figure
- 2 servers (A, B)
- 2 jobs (1, 2)
Fault Tolerance

- **Server Failure**
 - NM heartbeats to RM
 - If server fails: RM times out waiting for next heartbeat, RM lets all affected AMs know, and AMs take appropriate action
 - NM keeps track of each task running at its server
 - If task fails while in-progress, mark the task as idle and restart it
 - AM heartbeats to RM
 - On failure, RM restarts AM, which then syncs it up with its running tasks

- **RM Failure**
 - Use old checkpoints and bring up secondary RM

- Heartbeats also used to piggyback container requests
 - Avoids extra messages
Slow Servers

Slow tasks are called **Stragglers**

- The slowest task slows the entire job down (why?)
- Due to Bad Disk, Network Bandwidth, CPU, or Memory
- Keep track of “progress” of each task (% done)
- Perform proactive backup (replicated) execution of some straggler tasks
 - A task considered done when its first replica complete (other replicas can then be killed)
 - Approach called **Speculative Execution**.

Barrier at the end of Map phase!
Locality

- **Locality**
 - Since cloud has hierarchical topology (e.g., racks)
 - For server-fault-tolerance, GFS/HDFS stores 3 replicas of each of chunks (e.g., 64 MB in size)
 - For rack-fault-tolerance, on different racks, e.g., 2 on a rack, 1 on a different rack
 - Mapreduce attempts to schedule a map task on
 1. a machine that contains a replica of corresponding input data, or failing that,
 2. on the same rack as a machine containing the input, or failing that,
 3. Anywhere
 - Note: The 2-1 split of replicas is intended to reduce bandwidth when writing file.
 - Using more racks does not affect overall Mapreduce scheduling performance
That was Hadoop 2.x...

- Hadoop 3.x (new!) over Hadoop 2.x
 - Dockers instead of container
 - Erasure coding instead of 3-way replication
 - Multiple Namenodes instead of one (name resolution)
 - GPU support (for machine learning)
 - Intra-node disk balancing (for repurposed disks)
 - Intra-queue preemption in addition to inter-queue
 - (From https://hortonworks.com/blog/hadoop-3-adds-value-hadoop-2/)
Mapreduce: Summary

- Mapreduce uses parallelization + aggregation to schedule applications across clusters

- Need to deal with failure

- Plenty of ongoing research work in scheduling and fault-tolerance for Mapreduce and Hadoop
Announcements

• MP Groups **DUE TODAY 5 pm** (see course webpage).
 – Hard deadline, as Engr-IT will create and assign VMs tomorrow!
• Please fill out Student Survey by today (see course webpage).
• **DO NOT**
 – Change MP groups unless your partner has dropped
 – Leave your MP partner hanging: Both MP partners should contribute equally (we will ask!)

• **MP1 due Sep 16**
 – VMs will be distributed soon (watch Piazza)
 – Demos will be Monday Sep 17 (schedule and details will be posted before that on Piazza)
• **HW1 due Sep 25**
• Check Piazza often! It’s where all the announcements are at!
• Waitlist form: open again as of today