
CS 425 / ECE 428
Distributed Systems

Fall 2018
Indranil Gupta (Indy)
Lecture 14: Multicast

All slides © IG

Multicast Problem

2

• Multicastà message sent to a group of
processes

• Broadcastà message sent to all
processes (anywhere)

• Unicastà message sent from one
sender process to one receiver process

Other Communication Forms

3

• A widely-used abstraction by almost all cloud systems
• Storage systems like Cassandra or a database

– Replica servers for a key: Writes/reads to the key are multicast within the replica group
– All servers: membership information (e.g., heartbeats) is multicast across all servers in

cluster
• Online scoreboards (ESPN, French Open, FIFA World Cup)

– Multicast to group of clients interested in the scores
• Stock Exchanges

– Group is the set of broker computers
– Groups of computers for High frequency Trading

• Air traffic control system
– All controllers need to receive the same updates in the same order

Who Uses Multicast?

4

• Determines the meaning of “same order” of
multicast delivery at different processes in the group

• Three popular flavors implemented
by several multicast protocols
1. FIFO ordering
2. Causal ordering
3. Total ordering

Multicast Ordering

5

• Multicasts from each sender are received in
the order they are sent, at all receivers

• Don’t worry about multicasts from
different senders

• More formally
– If a correct process issues (sends)

multicast(g,m) to group g and then
multicast(g,m�), then every correct process
that delivers m� would already have delivered
m.

1. FIFO ordering

6

M1:1 and M1:2 should be received in that order at each receiver
Order of delivery of M3:1 and M1:2 could be different at different receivers

FIFO Ordering: Example

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1

• Multicasts whose send events are
causally related, must be received in the
same causality-obeying order at all
receivers

• Formally
– If multicast(g,m) à multicast(g,m�)

then any correct process that delivers
m� would already have delivered m.

– (à is Lamport’s happens-before)

2. Causal Ordering

8

M3:1 à M3:2, and so should be received in that order at each receiver
M1:1 à M3:1, and so should be received in that order at each receiver
M3:1 and M2:1 are concurrent and thus ok to be received in different orders at

different receivers

Causal Ordering: Example

P2

Time
P1

P3

M1:1

P4

M3:1 M3:2

M2:1

• Causal Ordering => FIFO Ordering
• Why?

– If two multicasts M and M’ are sent by the same
process P, and M was sent before M’, then M à
M’

– Then a multicast protocol that implements
causal ordering will obey FIFO ordering since
M à M’

• Reverse is not true! FIFO ordering does not
imply causal ordering.

Causal vs. FIFO

10

• Group = set of your friends on a social
network

• A friend sees your message m, and she
posts a response (comment) m’ to it
– If friends receive m’ before m, it wouldn’t

make sense
– But if two friends post messages m” and n”

concurrently, then they can be seen in any
order at receivers

• A variety of systems implement causal
ordering: Social networks, bulletin boards,
comments on websites, etc.

Why Causal at All?

11

• Also known as “Atomic Broadcast”
• Unlike FIFO and causal, this does not pay

attention to order of multicast sending
• Ensures all receivers receive all multicasts in

the same order
• Formally

– If a correct process P delivers message
m before m� (independent of the
senders), then any other correct
process P’ that delivers m� would
already have delivered m.

3. Total Ordering

12

The order of receipt of multicasts is the same at all processes.
M1:1, then M2:1, then M3:1, then M3:2
May need to delay delivery of some messages

Total Ordering: Example

P2

Time
P1

P3

M1:1

P4

M3:1 M3:2

M2:1

13

• Since FIFO/Causal are
orthogonal to Total, can have
hybrid ordering protocols too
– FIFO-total hybrid protocol

satisfies both FIFO and total
orders

– Causal-total hybrid protocol
satisfies both Causal and total
orders

Hybrid Variants

14

• That was what ordering is
• But how do we implement

each of these orderings?

Implementation?

15

• Each receiver maintains a per-sender
sequence number (integers)
– Processes P1 through PN
– Pi maintains a vector of sequence

numbers Pi[1…N] (initially all
zeroes)

– Pi[j] is the latest sequence number
Pi has received from Pj

FIFO Multicast: Data Structures

16

• Send multicast at process Pj:
– Set Pj[j] = Pj[j] + 1
– Include new Pj[j] in multicast message as

its sequence number
• Receive multicast: If Pi receives a multicast

from Pj with sequence number S in message
– if (S == Pi[j] + 1) then

• deliver message to application
• Set Pi[j] = Pi[j] + 1

– else buffer this multicast until above
condition is true

FIFO Multicast: Updating Rules

17

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

FIFO Ordering: Example

18

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

?

[1,0,0,0]

FIFO Ordering: Example

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[0,0,0,0]
Buffer!

P1, seq: 2

[1,0,0,0] [2,0,0,0]

FIFO Ordering: Example

[1,0,0,0]
Deliver this!
Deliver buffered <P1, seq:2>
Update [2,0,0,0]

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[0,0,0,0]
Buffer!

P1, seq: 2

[1,0,0,0] [2,0,0,0]

[2,0,0,0]
Deliver!

[1,0,0,0]
Deliver this!
Deliver buffered <P1, seq:2>
Update [2,0,0,0]FIFO Ordering: Example

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[0,0,0,0]
Buffer!

P1, seq: 2

[1,0,0,0] [2,0,0,0]

[2,0,0,0]
Deliver!

[1,0,0,0]
Deliver this!
Deliver buffered <P1, seq:2>
Update [2,0,0,0]

P3, seq: 1
[2,0,1,0]

[2,0,1,0]
Deliver!

[2,0,1,0]
Deliver!

?

FIFO Ordering: Example

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[0,0,0,0]
Buffer!

P1, seq: 2

[1,0,0,0] [2,0,0,0]

[2,0,0,0]
Deliver!

[1,0,0,0]
Deliver this!
Deliver buffered <P1, seq:2>
Update [2,0,0,0]

P3, seq: 1
[2,0,1,0]

[2,0,1,0]
Deliver!

[2,0,1,0]
Deliver!
[1,0,1,0]
Deliver!

[2,0,1,0]
Deliver!

FIFO Ordering: Example

• Ensures all receivers receive all
multicasts in the same order

• Formally
– If a correct process P delivers

message m before m�
(independent of the senders),
then any other correct process
P’ that delivers m� would
already have delivered m.

Total Ordering

24

• Special process elected as leader or sequencer
• Send multicast at process Pi:

– Send multicast message M to group and sequencer
• Sequencer:

– Maintains a global sequence number S (initially 0)
– When it receives a multicast message M, it sets S = S + 1, and

multicasts <M, S>
• Receive multicast at process Pi:

– Pi maintains a local received global sequence number Si (initially 0)
– If Pi receives a multicast M from Pj, it buffers it until it both

1. Pi receives <M, S(M)> from sequencer, and
2. Si + 1 = S(M)
• Then deliver it message to application and set Si = Si + 1

Sequencer-based Approach

25

• Multicasts whose send events are
causally related, must be received in
the same causality-obeying order at
all receivers

• Formally
– If multicast(g,m) à multicast(g,m�)

then any correct process that
delivers m� would already have
delivered m.

– (à is Lamport’s happens-before)

Causal Ordering

26

• Each receiver maintains a vector of
per-sender sequence numbers
(integers)
– Similar to FIFO Multicast,

but updating rules are different
– Processes P1 through PN
– Pi maintains a vector Pi[1…N]

(initially all zeroes)
– Pi[j] is the latest sequence number Pi

has received from Pj

Causal Multicast: Datastructures

27

• Send multicast at process Pj:
– Set Pj[j] = Pj[j] + 1
– Include new entire vector Pj[1…N] in multicast message as its sequence number

• Receive multicast: If Pi receives a multicast from Pj with vector
M[1…N] (= Pj[1…N]) in message, buffer it until both:

1. This message is the next one Pi is expecting from Pj, i.e.,
• M[j] = Pi[j] + 1

2. All multicasts, anywhere in the group, which happened-before M have been
received at Pi, i.e.,

• For all k ≠ j: M[k] ≤ Pi[k]
• i.e., Receiver satisfies causality

3. When above two conditions satisfied, deliver M to application and set Pi[j] = M[j]

Causal Multicast: Updating Rules

28

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]

Causal Ordering: Example 29

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

[1,1,0,0]

Causal Ordering: Example

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

[1,1,0,0]

[1,1,0,0]
Deliver!

Missing 1 from P1
Buffer!

Causal Ordering: Example

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

[1,1,0,0]

[1,1,0,0]
Deliver!

Missing 1 from P1
Buffer!

[1,0,0,1]

Deliver!
Receiver satisfies causality

Deliver!
Receiver satisfies causality

Causal Ordering: Example

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

[1,1,0,0]

[1,1,0,0]
Deliver!

Missing 1 from P1
Buffer!

[1,0,0,1]

Deliver!
Receiver satisfies causality

Deliver!
Receiver satisfies causality

Missing 1 from P1
Buffer!

Causal Ordering: Example

Causal Ordering: Example

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

[1,1,0,0]

[1,1,0,0]
Deliver!

Missing 1 from P1
Buffer!

[1,0,0,1]

Deliver!
Receiver satisfies causality

Deliver!
Receiver satisfies causality

Missing 1 from P1
Buffer!

Deliver P1’s multicast
Receiver satisfies causality for buffered multicasts

Deliver P2’s buffered multicast
Deliver P4’s buffered multicast

Causal Ordering: Example

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

[1,1,0,0]

[1,1,0,0]
Deliver!

Missing 1 from P1
Buffer!

[1,0,0,1]

Deliver!
Receiver satisfies causality

Deliver!
Receiver satisfies causality

Missing 1 from P1
Buffer!

Deliver P1’s multicast
Receiver satisfies causality for buffered multicasts

Deliver P2’s buffered multicast
Deliver P4’s buffered multicast

Deliver!

• Ordering of multicasts affects correctness
of distributed systems using multicasts

• Three popular ways of implementing
ordering
– FIFO, Causal, Total

• And their implementations
• What about reliability of multicasts?
• What about failures?

Summary: Multicast Ordering

36

• Reliable multicast loosely says that
every process in the group receives
all multicasts
– Reliability is orthogonal to ordering
– Can implement Reliable-FIFO, or

Reliable-Causal, or Reliable-Total, or
Reliable-Hybrid protocols

• What about process failures?
• Definition becomes vague

Reliable Multicast

37

• Need all correct (i.e., non-
faulty) processes to receive
the same set of multicasts as
all other correct processes
– Faulty processes stop anyway,

so we won’t worry about them

Reliable Multicast (under failures)

38

• Let’s assume we have reliable unicast
(e.g., TCP) available to us

• First-cut: Sender process (of each multicast
M) sequentially sends a reliable unicast
message to all group recipients

• First-cut protocol does not satisfy reliability
– If sender fails, some correct processes

might receive multicast M, while other
correct processes might not receive M

Implementing Reliable Multicast

39

• Trick: Have receivers help the sender
1. Sender process (of each multicast M)

sequentially sends a reliable unicast
message to all group recipients

2. When a receiver receives multicast
M, it also sequentially sends M to all
the group’s processes

REALLY Implementing Reliable Multicast

40

• Not the most efficient multicast protocol,
but reliable

• Proof is by contradiction
• Assume two correct processes Pi and Pj are so

that Pi received a multicast M and Pj did not
receive that multicast M
– Then Pi would have sequentially sent the

multicast M to all group members, including Pj,
and Pj would have received M

– A contradiction
– Hence our initial assumption must be false
– Hence protocol preserves reliability

Analysis

41

• Attempts to preserve multicast ordering
and reliability in spite of failures

• Combines a membership protocol with a
multicast protocol

• Systems that implemented it (like Isis
Systems) have been used in NYSE, French
Air Traffic Control System, Swiss Stock
Exchange

Virtual Synchrony or View Synchrony

42

• Each process maintains a membership list
• The membership list is called a View
• An update to the membership list is called a View Change

– Process join, leave, or failure
• Virtual synchrony guarantees that all view changes are delivered in the same

order at all correct processes
– If a correct P1 process receives views, say {P1}, {P1, P2, P3}, {P1, P2}, {P1, P2, P4}

then
– Any other correct process receives the same sequence of view changes (after it joins the

group)
• P2 receives views {P1, P2, P3}, {P1, P2}, {P1, P2, P4}

• Views may be delivered at different physical times at processes,
but they are delivered in the same order

Views

43

• A multicast M is said to be “delivered in a view V at process Pi” if
– Pi receives view V, and then sometime before Pi receives the next view it

delivers multicast M
• Virtual synchrony ensures that

1. The set of multicasts delivered in a given view is the same set at all
correct processes that were in that view

• What happens in a View, stays in that View
2. The sender of the multicast message also belongs to that view
3. If a process Pi does not deliver a multicast M in view V while other

processes in the view V delivered M in V, then Pi will be forcibly removed
from the next view delivered after V at the other processes

VSync Multicasts

44

Time

P2

P1

P3

P4

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

Crash

View{P1,P2,P3}

View{P1,P2,P3}

View{P1,P2,P3}

M1

M2

M3

Satisfies virtual synchrony 45

Time

P2

P1

P3

P4

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3}

View{P1,P2,P3}

View{P1,P2,P3}

M1

M2

M3

Does not satisfy virtual synchrony
Crash

46

Time

P2

P1

P3

P4

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2}

View{P1,P2}

M1

M2

M3

Satisfies virtual synchrony
Crash

47

Time

P2

P1

P3

P4

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

Crash

View{P1,P2,P3}

View{P1,P2,P3}

View{P1,P2,P3}

M1

M2

M3

Does not satisfy virtual synchrony 48

Time

P2

P1

P3

P4

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

Crash

View{P1,P2,P3}

View{P1,P2,P3}

View{P1,P2,P3}

M1

M2 (not delivered at P2)

M3

Satisfies virtual synchrony 49

Time

P2

P1

P3

P4

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

Crash

View{P1,P2,P3}

View{P1,P2,P3}

View{P1,P2,P3}

M1

M2

M3

Does not satisfy virtual synchrony 50

Time

P2

P1

P3

P4

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

Crash

View{P1,P2,P3}

View{P1,P2,P3}

View{P1,P2,P3}

M1

M2

M3

Does not satisfy virtual synchrony 51

Time

P2

P1

P3

P4

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

Crash

View{P1,P2,P3}

View{P1,P2,P3}

View{P1,P2,P3}

M1

M2

M3

Satisfies virtual synchrony 52

• Again, orthogonal to virtual synchrony
• The set of multicasts delivered in a

view can be ordered either
– FIFO
– Or Causally
– Or Totally
– Or using a hybrid scheme

What about Multicast Ordering?

53

• Called “virtual synchrony” since in spite
of running on an asynchronous network,
it gives the appearance of a synchronous
network underneath that obeys the same
ordering at all processes

• So can this virtually synchronous system
be used to implement consensus?

• No! VSync groups susceptible to
partitioning
– E.g., due to inaccurate failure detections

About that name

54

Time

P2

P1

P3

P4

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

Crash

View{P1}

View{P2, P3}

View{P2,P3}

M1

M2

M3

Partitioning in View synchronous systems 55

• Multicast an important building
block for cloud computing systems

• Depending on application need,
can implement
– Ordering
– Reliability
– Virtual synchrony

Summary

56

Min Mean Median Max

Grad 3-cred 55 84.5 85 100

4-cred 62 89.11594203 91 98

Undergrad 3-cred 29 81.86440678 84 98

4-cred 36 84.11666667 86
98

Midterm Statistics

Announcements

• HW3
• Midterm Solutions - soon
• Midterm Grading – handed back now

58

Collect your Midterms

• 3 piles
• To your LEFT In MIDDLE To your RIGHT

59

