CS 425 / ECE 428
Distributed Systems
Fall 2018

Indranil Gupta (Indy)

Lecture 12: Time and Ordering
Why Synchronization?

• You want to catch a bus at 6.05 pm, but your watch is off by 15 minutes
 – What if your watch is Late by 15 minutes?
 • You’ll miss the bus!
 – What if your watch is Fast by 15 minutes?
 • You’ll end up unfairly waiting for a longer time than you intended

• Time synchronization is required for both
 – Correctness
 – Fairness
Cloud airline reservation system

Server A receives a client request to purchase last ticket on flight ABC 123.

Server A timestamps purchase using local clock $9h:15m:32.45s$, and logs it. Replies ok to client.

That was the last seat. Server A sends message to Server B saying “flight full.”

B enters “Flight ABC 123 full” + its own local clock value (which reads $9h:10m:10.11s$) into its log.

Server C queries A’s and B’s logs. Is confused that a client purchased a ticket at A after the flight became full at B.

This may lead to further incorrect actions by C
End hosts in Internet-based systems (like clouds)
- Each have their own clocks
- Unlike processors (CPUs) within one server or workstation which share a system clock

Processes in Internet-based systems follow an *asynchronous* system model
- No bounds on
 - Message delays
 - Processing delays
- Unlike multi-processor (or parallel) systems which follow a *synchronous* system model
An Asynchronous Distributed System consists of a number of processes. Each process has a state (values of variables). Each process takes actions to change its state, which may be an instruction or a communication action (send, receive).

An event is the occurrence of an action. Each process has a local clock – events within a process can be assigned timestamps, and thus ordered linearly. But – in a distributed system, we also need to know the time order of events across different processes.
Each process (running at some end host) has its own clock.

When comparing two clocks at two processes:

- Clock Skew = Relative Difference in clock values of two processes
 - Like distance between two vehicles on a road
- Clock Drift = Relative Difference in clock frequencies (rates) of two processes
 - Like difference in speeds of two vehicles on the road

A non-zero clock skew implies clocks are not synchronized.

A non-zero clock drift causes skew to increase (eventually).

- If faster vehicle is ahead, it will drift away
- If faster vehicle is behind, it will catch up and then drift away
How often to Synchronize?

- Maximum Drift Rate (MDR) of a clock
- Absolute MDR is defined relative to Coordinated Universal Time (UTC). UTC is the “correct” time at any point of time.
 - MDR of a process depends on the environment.
- Max drift rate between two clocks with similar MDR is $2 \times MDR$
- Given a maximum acceptable skew M between any pair of clocks, need to synchronize at least once every: $M / (2 \times MDR)$ time units
 - Since time = distance/speed
External vs Internal Synchronization

- **Consider a group of processes**
- **External Synchronization**
 - Each process $C(i)$’s clock is within a bound D of a well-known clock S external to the group
 - $|C(i) - S| < D$ at all times
 - External clock may be connected to UTC (Universal Coordinated Time) or an atomic clock
 - E.g., Cristian’s algorithm, NTP
- **Internal Synchronization**
 - Every pair of processes in group have clocks within bound D
 - $|C(i) - C(j)| < D$ at all times and for all processes i, j
 - E.g., Berkeley algorithm
External vs Internal Synchronization (2)

- **External Synchronization with** D \Rightarrow **Internal Synchronization with** 2*D

- **Internal Synchronization does not imply** External Synchronization
 - In fact, the entire system may drift away from the external clock S!
Next

- Algorithms for Clock Synchronization
Basics

- **External time synchronization**
- **All processes P synchronize with a time server S**

![Diagram showing time synchronization](image)

- **What’s the time?**
- **Here’s the time t!**
- **Check local clock to find time t**
What’s Wrong

• By the time response message is received at P, time has moved on
• P’s time set to t is inaccurate!
• Inaccuracy a function of message latencies
• Since latencies unbounded in an asynchronous system, the inaccuracy cannot be bounded
Cristian’s Algorithm

- P measures the round-trip-time RTT of message exchange
Cristian’s Algorithm (2)

- P measures the round-trip-time RTT of message exchange
- Suppose we know the minimum P → S latency min1
- And the minimum S → P latency min2
 - min1 and min2 depend on Operating system overhead to buffer messages, TCP time to queue messages, etc.

Diagram:
- RTT
- Set clock to t
- Check local clock to find time t
- Here’s the time t!
- What’s the time?
Cristian’s Algorithm (3)

- P measures the round-trip-time RTT of message exchange
- Suppose we know the minimum P → S latency min1
- And the minimum S → P latency min2
 - min1 and min2 depend on Operating system overhead to buffer messages, TCP time to queue messages, etc.
- The actual time at P when it receives response is between \([t+\text{min2}, t+\text{RTT-min1}]\)
Cristian’s Algorithm (4)

- The actual time at P when it receives response is between \([t+\min_2, t+\RTT-\min_1]\)
- P sets its time to halfway through this interval
 - To: \(t + (\RTT+\min_2-\min_1)/2\)
- Error is at most \((\RTT-\min_2-\min_1)/2\)
 - Bounded!

Diagram:
- P sends a request to S.
- S replies, sending the time back to P, which is delayed by the RTT.
- P checks its local clock to find the time \(t\).
- P sets its clock to \(t + (\RTT+\min_2-\min_1)/2\).

Text:
What's the time?
Here's the time \(t\!\)!
Check local clock to find time \(t\)!
Gotchas

- Allowed to increase clock value but should never decrease clock value
 - May violate ordering of events within the same process
- Allowed to increase or decrease speed of clock
- If error is too high, take multiple readings and average them
NTP = Network Time Protocol

- NTP Servers organized in a tree
- Each Client = a leaf of tree
- Each node synchronizes with its tree parent
NTP Protocol

Let’s start protocol

Message 1 send time ts1
Message 2 send time ts2
Message 1 recv time tr1
Message 2 recv time tr2
What the Child Does

• Child calculates offset between its clock and parent’s clock
• Uses \(ts1, tr1, ts2, tr2 \)
• Offset is calculated as

\[
o = (tr1 - tr2 + ts2 - ts1)/2
\]
Why $o = (tr_1 - tr_2 + ts_2 - ts_1)/2$?

- Offset $o = (tr_1 - tr_2 + ts_2 - ts_1)/2$
- Let’s calculate the error
- Suppose real offset is $oreal$
 - Child is ahead of parent by $oreal$
 - Parent is ahead of child by $-oreal$
- Suppose one-way latency of Message 1 is $L1$
 ($L2$ for Message 2)
- No one knows $L1$ or $L2$!
- Then

 $tr_1 = ts_1 + L_1 + oreal$
 $tr_2 = ts_2 + L_2 - oreal$
Why \(o = (tr1 - tr2 + ts2 - ts1)/2 \)? (2)

- **Then**
 \[
 tr1 = ts1 + L1 + oreal \\
 tr2 = ts2 + L2 - oreal
 \]

- **Subtracting second equation from the first**
 \[
 oreal = (tr1 - tr2 + ts2 - ts1)/2 + (L2 - L1)/2 \\
 => oreal = o + (L2 - L1)/2 \\
 => |oreal - o| < |(L2 - L1)/2| < |(L2 + L1)/2| \\
 - Thus, the error is bounded by the round-trip-time
And yet...

- We still have a non-zero error!
- We just can’t seem to get rid of error
 - Can’t, as long as message latencies are non-zero
- Can we avoid synchronizing clocks altogether, and still be able to order events?
Lamport Timestamps
Ordering Events in a Distributed System

• To order events across processes, trying to sync clocks is one approach
• What if we instead assigned timestamps to events that were not *absolute* time?
• As long as these timestamps obey *causality*, that would work
 If an event A causally happens before another event B, then \(\text{timestamp}(A) < \text{timestamp}(B) \)
 Humans use causality all the time
 E.g., I enter a house only after I unlock it
 E.g., You receive a letter only after I send it
Logical (or Lamport) Ordering

- Proposed by Leslie Lamport in the 1970s
- Used in almost all distributed systems since then
- Almost all cloud computing systems use some form of logical ordering of events
Logical (or Lamport) Ordering (2)

- Define a logical relation *Happens-Before* among pairs of events
- *Happens-Before* denoted as →
- Three rules
 1. On the same process: \(a \rightarrow b \), if \(\text{time}(a) < \text{time}(b) \) (using the local clock)
 2. If p1 sends \(m \) to p2: \(\text{send}(m) \rightarrow \text{receive}(m) \)
 3. (Transitivity) If \(a \rightarrow b \) and \(b \rightarrow c \) then \(a \rightarrow c \)
- Creates a *partial order* among events
 - Not all events related to each other via →
While P1 and P3 each have an event labeled E, these are different events as they occur at different processes.
Happens-Before

- A → B
- B → F
- A → F
Happens-Before (2)

- **Instruction or step**
- **Message**

- P1: A → B → C → D → E
- P2: E' → F → G → E
- P3: H → G, F → J, H → J, C → J

- Time
In practice: Lamport timestamps

- **Goal:** Assign logical (Lamport) timestamp to each event
- **Timestamps obey causality**
- **Rules**
 - Each process uses a local counter (clock) which is an integer
 - initial value of counter is zero
 - A process increments its counter when a send or an instruction happens at it. The counter is assigned to the event as its timestamp.
 - A send (message) event carries its timestamp
 - For a receive (message) event the counter is updated by $\max(\text{local clock}, \text{message timestamp}) + 1$
Lamport Timestamps

Initial counters (clocks)

- Initial counters (clocks)

- Instruction or step

- Message
Lamport Timestamps

- Message send
 - ts = 1

- Message carries
 - ts = 1

- Instruction or step
 - ts = 1
Lamport Timestamps

Message carries

\[ts = \max(\text{local}, \text{msg}) + 1 \]

\[= \max(0, 1) + 1 \]

\[= 2 \]
Lamport Timestamps

- Message carries ts = 2
- \[\text{max}(2, 2) + 1 = 3 \]
Lamport Timestamps

max(3, 4) + 1 = 5
Lamport Timestamps

- Instruction or step
- Message
Obeying Causality

- A → B :: 1 < 2
- B → F :: 2 < 3
- A → F :: 1 < 3
Obeying Causality (2)

- $H \rightarrow G : 1 < 4$
- $F \rightarrow J : 3 < 7$
- $H \rightarrow J : 1 < 7$
- $C \rightarrow J : 3 < 7$
Not always implying Causality

- ? C → F ? :: 3 = 3
- ? H → C ? :: 1 < 3
- (C, F) and (H, C) are pairs of concurrent events
Concurrent Events

- A pair of concurrent events doesn’t have a causal path from one event to another (either way, in the pair)
- Lamport timestamps not guaranteed to be ordered or unequal for concurrent events
- Ok, since concurrent events are not causality related!
- Remember
 \[E_1 \rightarrow E_2 \Rightarrow \text{timestamp}(E_1) < \text{timestamp} (E_2), \ \text{BUT} \]
 \[\text{timestamp}(E_1) < \text{timestamp} (E_2) \Rightarrow \]
 \{E_1 \rightarrow E_2\} OR \{E_1 \text{ and } E_2 \text{ concurrent}\}
Can we have causal or logical timestamps from which we can tell if two events are concurrent or causally related?
Vector Timestamps

- Used in key-value stores like Riak
- Each process uses a vector of integer clocks
- Suppose there are N processes in the group $1 \ldots N$
- Each vector has N elements
- Process i maintains vector $V_i[1 \ldots N]$
- jth element of vector clock at process i, $V_i[j]$, is i's knowledge of latest events at process j
Assigning Vector Timestamps

• Incrementing vector clocks
 1. On an instruction or send event at process i, it increments only its ith element of its vector clock
 2. Each message carries the send-event’s vector timestamp $V_{\text{message}}[1...N]$
 3. On receiving a message at process i:
 \[V_i[i] = V_i[i] + 1 \]
 \[V_i[j] = \max(V_{\text{message}}[j], V_i[j]) \text{ for } j \neq i \]
Example

Instruction or step

Message
Vector Timestamps

Initial counters (clocks)
Vector Timestamps

P1
(0,0,0) → (1,0,0)

P2
(0,0,0)

P3
(0,0,0) → (0,0,1)

Message(0,0,1)
Vector Timestamps

P1: (0,0,0) → (1,0,0)

P2: (0,0,0) → (0,1,1)

P3: (0,0,0) → (0,0,1)

Message: (0,0,1)
Vector Timestamps
Vector Timestamps

P1
(0,0,0) (1,0,0) (2,0,0) (3,0,0) (4,3,1) (5,3,1)

P2
(0,0,0) (0,1,1) (2,2,1) (2,3,1)

P3
(0,0,0) (0,0,1) (0,0,2) (5,3,3)
Causally-Related ...

• \(VT_1 = VT_2 \),
 iff (if and only if)
 \(VT_1[i] = VT_2[i] \), for all \(i = 1, \ldots, N \)

• \(VT_1 \leq VT_2 \),
 iff \(VT_1[i] \leq VT_2[i] \), for all \(i = 1, \ldots, N \)

• Two events are causally related iff
 \(VT_1 < VT_2 \), i.e.,
 iff \(VT_1 \leq VT_2 \) &
 there exists \(j \) such that
 \(1 \leq j \leq N \) & \(VT_1[j] < VT_2[j] \)
Two events VT_1 and VT_2 are concurrent \textit{iff}

\[\text{NOT} \ (VT_1 \leq VT_2) \ \text{AND NOT} \ (VT_2 \leq VT_1) \]

We’ll denote this as $VT_2 \ ||| \ VT_1$
Obeying Causality

- A → B :: (1,0,0) < (2,0,0)
- B → F :: (2,0,0) < (2,2,1)
- A → F :: (1,0,0) < (2,2,1)
Obeying Causality (2)

- \(H \rightarrow G \) :: \((0,0,1) < (2,3,1)\)
- \(F \rightarrow J \) :: \((2,2,1) < (5,3,3)\)
- \(H \rightarrow J \) :: \((0,0,1) < (5,3,3)\)
- \(C \rightarrow J \) :: \((3,0,0) < (5,3,3)\)
Identifying Concurrent Events

\begin{itemize}
 \item \(C \& F :: (3,0,0) \parallel (2,2,1)\)
 \item \(H \& C :: (0,0,1) \parallel (3,0,0)\)
 \item \((C, F)\) and \((H, C)\) are pairs of \textit{concurrent} events
\end{itemize}
Logical Timestamps: Summary

- **Lamport timestamps**
 - Integer clocks assigned to events
 - Obey causality
 - Cannot distinguish concurrent events

- **Vector timestamps**
 - Obey causality
 - By using more space, can also identify concurrent events
Time and Ordering: Summary

- Clocks are unsynchronized in an asynchronous distributed system
- But need to order events, across processes!
- **Time synchronization**
 - Cristian’s algorithm
 - NTP
 - Berkeley algorithm
 - But error a function of round-trip-time
- Can avoid time sync altogether by instead assigning logical timestamps to events
Reminders

• (4 cr students) MP2 due this Sunday, Demos on Monday
 – Signup sheet (soon) on Piazza
• (All) HW2 due next Tuesday
• Practice Midterm has been released