
Apache Cassandra™ Documentation
February 16, 2012

© 2012 DataStax. All rights reserved.

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

Apache,!Apache!Cassandra,!Apache!Hadoop,!Hadoop!and!the!eye!logo!
are!trademarks!of!the!Apache!Software!Foundation!

Contents
Apache Cassandra 1.0 Documentation 1

Introduction to Apache Cassandra 1

Getting Started with Cassandra 1

Java Prerequisites 1

Download the Software 1

Install the Software 1

Start the Cassandra Server 1

Login to Cassandra 1

Create a Keyspace (database) 1

Create a Column Family 2

Insert, Update, Delete, Read Data 2

Getting Started with Cassandra and DataStax Community Edition 2

Installing a Single-Node Instance of Cassandra 2

Checking for a Java Installation 2

Installing the DataStax Community Binaries on Linux 3

Configuring and Starting a Single-Node Cluster on Linux 4

Installing the DataStax Community Binaries on Mac 5

Installing the DataStax Community Binaries on Windows 5

Configuring and Starting DataStax OpsCenter 5

Running the Portfolio Demo Sample Application 6

About the Portfolio Demo Use Case 6

Running the Demo Web Application 6

Exploring the Sample Data Model 7

Looking at the Schema Definitions in Cassandra-CLI 8

DataStax Community Release Notes 8

What's New 8

Prerequisites 8

Understanding the Cassandra Architecture 8

About Internode Communications (Gossip) 8

About Cluster Membership and Seed Nodes 9

About Failure Detection and Recovery 9

About Data Partitioning in Cassandra 10

About Partitioning in Multi-Data Center Clusters 10

Understanding the Partitioner Types 12

About the Random Partitioner 12

About Ordered Partitioners 13

About Replication in Cassandra 13

About Replica Placement Strategy 14

SimpleStrategy 14

NetworkTopologyStrategy 14

About Snitches 17

SimpleSnitch 18

DseSimpleSnitch 18

RackInferringSnitch 18

PropertyFileSnitch 19

EC2Snitch 19

EC2MultiRegionSnitch 19

About Dynamic Snitching 19

About Client Requests in Cassandra 19

About Write Requests 20

About Multi-Data Center Write Requests 20

About Read Requests 21

Planning a Cassandra Cluster Deployment 22

Selecting Hardware 22

Memory 22

CPU 22

Disk 23

Network 23

Planning an Amazon EC2 Cluster 23

Capacity Planning 24

Calculating Usable Disk Capacity 24

Calculating User Data Size 24

Choosing Node Configuration Options 25

Storage Settings 25

Gossip Settings 25

Purging Gossip State on a Node 25

Partitioner Settings 25

Snitch Settings 26

Configuring the PropertyFileSnitch 26

Choosing Keyspace Replication Options 27

Installing and Initializing a Cassandra Cluster 27

Installing Cassandra Using the Packaged Releases 27

Creating the Cassandra User and Configuring sudo 27

Installing Cassandra RPM Packages 28

Installing Sun JRE on RedHat Systems 28

Installing Cassandra Debian Packages 29

Installing Sun JRE on Ubuntu Systems 30

About Packaged Installs 31

Next Steps 31

Installing the Cassandra Tarball Distribution 31

About Cassandra Binary Installations 32

Installing JNA 32

Next Steps 32

Initializing a Cassandra Cluster on Amazon EC2 Using the DataStax AMI 32

Creating an EC2 Security Group for DataStax Community Edition 33

Launching the DataStax Community AMI 34

Connecting to Your Cassandra EC2 Instance 35

Configuring and Starting a Cassandra Cluster 38

Initializing a Multi-Node or Multi-Data Center Cluster 38

Calculating Tokens 39

Calculating Tokens for Multiple Racks 40

Calculating Tokens for a Single Data Center 40

Calculating Tokens for a Multi-Data Center Cluster 41

Starting and Stopping a Cassandra Node 42

Starting/Stopping Cassandra as a Stand-Alone Process 42

Starting/Stopping Cassandra as a Service 42

Upgrading Cassandra 43

Best Practices for Upgrading Cassandra 43

Upgrading Cassandra: 0.8.x to 1.0.x 43

New and Changed Parameters between 0.8 and 1.0 44

Upgrading Between Minor Releases of Cassandra 1.0.x 45

Understanding the Cassandra Data Model 45

The Cassandra Data Model 45

Comparing the Cassandra Data Model to a Relational Database 45

About Keyspaces 47

Defining Keyspaces 47

About Column Families 48

About Columns 49

About Special Columns (Counter, Expiring, Super) 49

About Expiring Columns 49

About Counter Columns 50

About Super Columns 50

About Data Types (Comparators and Validators) 50

About Validators 51

About Comparators 51

About Column Family Compression 52

When to Use Compression 52

Configuring Compression on a Column Family 52

About Indexes in Cassandra 52

About Primary Indexes 53

About Secondary Indexes 53

Building and Using Secondary Indexes 53

Planning Your Data Model 54

Start with Queries 54

Denormalize to Optimize 54

Planning for Concurrent Writes 54

Using Natural or Surrogate Row Keys 54

UUID Types for Column Names 55

Managing and Accessing Data in Cassandra 55

About Writes in Cassandra 55

About Compaction 55

About Transactions and Concurrency Control 55

About Inserts and Updates 56

About Deletes 56

About Hinted Handoff Writes 57

About Reads in Cassandra 57

About Data Consistency in Cassandra 58

Tunable Consistency for Client Requests 58

About Write Consistency 58

About Read Consistency 58

Choosing Client Consistency Levels 59

Consistency Levels for Multi-Data Center Clusters 59

Specifying Client Consistency Levels 60

About Cassandra's Built-in Consistency Repair Features 60

Cassandra Client APIs 60

About Cassandra CLI 60

About CQL 61

Other High-Level Clients 61

Java: Hector Client API 61

Python: Pycassa Client API 61

PHP: Phpcassa Client API 61

Getting Started Using the Cassandra CLI 61

Creating a Keyspace 62

Creating a Column Family 62

Creating a Counter Column Family 63

Inserting Rows and Columns 63

Reading Rows and Columns 64

Setting an Expiring Column 64

Indexing a Column 64

Deleting Rows and Columns 65

Dropping Column Families and Keyspaces 65

Getting Started with CQL 65

Starting the CQL Command-Line Program (cqlsh) 65

Running CQL Commands with cqlsh 66

Creating a Keyspace 66

Creating a Column Family 66

Inserting and Retrieving Columns 66

Adding Columns with ALTER COLUMNFAMILY 66

Altering Column Metadata 67

Specifying Column Expiration with TTL 67

Dropping Column Metadata 67

Indexing a Column 67

Deleting Columns and Rows 67

Dropping Column Families and Keyspaces 68

Configuration 68

Node and Cluster Configuration (cassandra.yaml) 68

Node and Cluster Initialization Properties 70

auto_bootstrap 70

broadcast_address 70

cluster_name 70

commitlog_directory 70

data_file_directories 70

initial_token 70

listen_address 70

partitioner 71

rpc_address 71

rpc_port 71

saved_caches_directory 71

seed_provider 71

seeds 71

storage_port 71

endpoint_snitch 71

Performance Tuning Properties 72

column_index_size_in_kb 72

commitlog_sync 72

commitlog_sync_period_in_ms 72

commitlog_total_space_in_mb 72

compaction_preheat_key_cache 72

compaction_throughput_mb_per_sec 72

concurrent_compactors 72

concurrent_reads 72

concurrent_writes 72

flush_largest_memtables_at 73

in_memory_compaction_limit_in_mb 73

index_interval 73

memtable_flush_queue_size 73

memtable_flush_writers 73

memtable_total_space_in_mb 73

multithreaded_compaction 73

reduce_cache_capacity_to 73

reduce_cache_sizes_at 73

sliced_buffer_size_in_kb 74

stream_throughput_outbound_megabits_per_sec 74

Remote Procedure Call Tuning Properties 74

request_scheduler 74

request_scheduler_id 74

request_scheduler_options 74

throttle_limit 74

default_weight 74

weights 74

rpc_keepalive 74

rpc_max_threads 75

rpc_min_threads 75

rpc_recv_buff_size_in_bytes 75

rpc_send_buff_size_in_bytes 75

rpc_timeout_in_ms 75

rpc_server_type 75

thrift_framed_transport_size_in_mb 75

thrift_max_message_length_in_mb 75

Internode Communication and Fault Detection Properties 75

dynamic_snitch 75

dynamic_snitch_badness_threshold 75

dynamic_snitch_reset_interval_in_ms 76

dynamic_snitch_update_interval_in_ms 76

hinted_handoff_enabled 76

hinted_handoff_throttle_delay_in_ms 76

max_hint_window_in_ms 76

phi_convict_threshold 76

Automatic Backup Properties 76

incremental_backups 76

snapshot_before_compaction 76

Security Properties 76

authenticator 76

authority 77

internode_encryption 77

keystore 77

keystore_password 77

truststore 77

truststore_password 77

Keyspace and Column Family Storage Configuration 77

Keyspace Attributes 78

name 78

placement_strategy 78

strategy_options 78

Column Family Attributes 79

column_metadata 79

column_type 80

comment 80

compaction_strategy 80

compaction_strategy_options 80

comparator 81

compare_subcolumns_with 81

compression_options 81

default_validation_class 81

gc_grace_seconds 81

key_cache_save_period_in_seconds 81

keys_cached 82

key_validation_class 82

name 82

read_repair_chance 82

replicate_on_write 82

max_compaction_threshold 82

min_compaction_threshold 82

memtable_flush_after_mins 82

memtable_operations_in_millions 82

memtable_throughput_in_mb 83

rows_cached 83

row_cache_provider 83

row_cache_save_period_in_seconds 83

Java and System Environment Settings Configuration 83

Heap Sizing Options 83

JMX Options 83

Further Reading on JVM Tuning 84

Authentication and Authorization Configuration 84

access.properties 84

passwd.properties 85

Logging Configuration 85

Logging Levels via the Properties File 85

Logging Levels via JMX 85

Operations 86

Monitoring a Cassandra Cluster 86

Monitoring Using DataStax OpsCenter 86

Monitoring Using nodetool 87

Monitoring Using JConsole 88

Compaction Metrics 89

Thread Pool Statistics 90

Read/Write Latency Metrics 90

ColumnFamily Statistics 90

Monitoring and Adjusting Cache Performance 91

Tuning Cassandra 91

Tuning the Cache 92

How Caching Works 92

Configuring the Column Family Key Cache 92

Configuring the Column Family Row Cache 92

Data Modeling Considerations for Cache Tuning 93

Hardware and OS Considerations for Cache Tuning 93

Estimating Cache Sizes 93

Tuning Write Performance (Memtables) 93

Tuning Java Heap Size 93

Tuning Java Garbage Collection 94

Tuning Compaction 94

Choosing a Column Family Compaction Strategy 94

Setting the Compaction Strategy on a Column Family 94

Tuning Options for Size-Tiered Compaction 95

Managing a Cassandra Cluster 95

Running Routine Node Repair 95

Adding Capacity to an Existing Cluster 95

Calculating Tokens For the New Nodes 96

Adding Nodes to a Cluster 96

Changing the Replication Factor 97

Replacing a Dead Node 97

Backing Up and Restoring Data 98

Taking a Snapshot 98

Clearing Snapshot Files 98

Enabling Incremental Backups 98

Restoring from a Snapshot 99

References 99

CQL Language Reference 99

CQL Lexical Structure 99

CQL Identifiers and Keywords 100

CQL Constants 100

CQL Comments 100

CQL Consistency Levels 100

CQL Data Types 101

Working with Dates and Times 101

CQL Storage Parameters 102

CQL Keyspace Storage Parameters 102

CQL Column Family Storage Parameters 102

CQL Commands 102

ALTER COLUMNFAMILY 102

Synopsis 103

Description 103

Parameters 103

Examples 103

BATCH 103

Synopsis 103

Description 104

Parameters 104

Example 104

CREATE COLUMNFAMILY 105

Synopsis 105

Description 105

Parameters 105

Examples 106

CREATE INDEX 106

Synopsis 106

Description 106

Parameters 106

Examples 106

CREATE KEYSPACE 107

Synopsis 107

Description 107

Parameters 107

Examples 107

DELETE 107

Synopsis 108

Description 108

Parameters 108

Example 108

DROP COLUMNFAMILY 109

Synopsis 109

Description 109

Parameters 109

Example 109

DROP INDEX 109

Synopsis 109

Description 109

Parameters 109

Example 109

DROP KEYSPACE 109

Synopsis 110

Description 110

Parameters 110

Example 110

INSERT 110

Synopsis 110

Description 110

Parameters 110

Example 111

SELECT 111

Synopsis 111

Description 111

Parameters 112

Examples 112

TRUNCATE 113

Synopsis 113

Description 113

Parameters 113

Example 113

UPDATE 113

Synopsis 113

Description 113

Parameters 114

<column_family> 114

Example 114

USE 115

Synopsis 115

Description 115

Parameters 115

Example 115

CQLSH-Specific Commands 115

ASSUME 115

Synopsis 115

Description 116

Parameters 116

Examples 116

DESCRIBE 116

Synopsis 116

Description 116

Parameters 116

Examples 117

SHOW 117

Synopsis 117

Description 117

Parameters 117

Examples 117

nodetool 118

cassandra 120

Usage 120

Environment 120

Options 120

Examples 121

stress 121

Setting up the Stress Utility 122

Usage 122

Using the Daemon Mode (stressd) 123

Examples 123

sstable2json / json2sstable 123

sstable2json 124

Usage 124

Output Format 124

json2sstable 125

Usage 125

sstablekeys 125

Usage 125

Troubleshooting Guide 125

Reads are getting slower while writes are still fast 125

Nodes seem to freeze after some period of time 126

Nodes are dying with OOM errors 126

Nodetool or JMX Connections Failing on Remote Nodes 126

View of ring differs between some nodes 126

Java reports an error saying there are too many open files 126

Apache Cassandra 1.0 Documentation
Introduction to Apache Cassandra
Apache Cassandra is a free, open-source, distributed database system for managing large amounts of structured,
semi-structured, and unstructured data. Cassandra is designed to scale to a very large size across many commodity
servers with no single point of failure. Cassandra provides a powerful dynamic schema data model designed to allow for
maximum flexibility and performance at scale.

Getting Started with Cassandra
Getting started with Cassandra is fast and easy. Installing Cassandra on a single machine is the best way to learn the
basics. The following will help you install Cassandra and become familiar with some basic commands.

Java Prerequisites
Before installing Cassandra on Linux, Windows, or Mac, ensure that you have the most up-to-date version of Java
installed on your machine. To determine if Java is installed on your system, in a terminal window enter:

java -version

Download the Software
Download the DataStax Community Edition Server, which is a bundle containing the most up-to-date version of
Cassandra along with all the utilities and tools you'll need. You can also download directly from a terminal window wget
on Linux or curl on Mac and the following URL:

http://downloads.datastax.com/community/dsc.tar.gz

On Windows, download and use the DataStax Windows MSI installer.

Note that DataStax also makes available RPM and Debian builds for Linux that are available on the main Download
page.

Install the Software
For Linux and Mac machines, unzip the tar download file:

tar -xvf <tar file>

Start the Cassandra Server
On Linux or Mac, navigate to the bin directory and invoke the cassandra script:

sudo ./cassandra

On Windows, the Cassandra server starts running after installation.

Login to Cassandra
Cassandra has a couple of interfaces that you can use to enter commands - the CLI and the CQL (Cassandra Query
Language) utility. For this indroduction use the CLI, which in the Windows Cassandra group folder and in the bin
directory on Linux or Mac:

./cassandra-cli -h localhost

Create a Keyspace (database)

Apache Cassandra 1.0 Documentation

1

http://www.datastax.com/download
http://www.datastax.com/download
http://www.datastax.com/download

A keyspace in Cassandra is the equivalent of a database in the RDBMS world. You can have multiple keyspaces on a
Cassandra server.

First create a simple keyspace to work with:

[default@unknown] create keyspace mykeyspace;

[default@unknown] use mykeyspace;

Create a Column Family
A couple family is the primary data object in Cassandra, similar to a table in the RDBMS world. To create simple column
family:

[default@mykeyspace] create column family cf1;

Insert, Update, Delete, Read Data
Now you can enter and read data from Cassandra.

To insert data:

[default@mykeyspace] set cf1[1]['c2']=utf8('test');

To read that data:

[default@mykeyspace] get cf1[1];

To update that data:

[default@mykeyspace] set cf1[1]['c2']=utf8('test2');

To delete that data:

[default@mykeyspace] del cf1[1];

To exit the CLI:

[default@mykeyspace] exit;

Getting Started with Cassandra and DataStax Community Edition
This quick start guide is intended to get you up and running quickly on a single-node instance using the DataStax
Community Edition packages. DataStax Community Edition is a smart bundle comprised of the most up-to-date and
stable version of Apache Cassandra, DataStax OpsCenter Community Edition, the CQL command line utility, and the
DataStax portfolio demo application.

This tutorial will guide you through setting up a single-node cluster in your home directory, and running the demo
application to see Cassandra in action.

Installing a Single-Node Instance of Cassandra
The fastest way to get up and running quickly with Cassandra is to install Cassandra using the DataStax Community
tarball distributions and start a single-node instance. Cassandra is intended to be run on multiple nodes, however
starting out with a single-node cluster is a great way to get started.

Getting up and running takes just three simple steps:

1. Make sure you have Java installed

2. Install the DataStax Community Edition of Apache Cassandra

3. Set a couple of configuration properties and start the Cassandra server

Checking for a Java Installation

Create a Column Family

2

Cassandra is a Java program and requires a Java Virtual Machine (JVM) to be installed before you can start the server.
For production deployments, you will need the Sun Java Runtime Environment 1.6.0_19 or later, but if you are just
installing an evaluation instance, any JVM is fine.

To check for Java, run the following command in a terminal session:

java -version

If you do not have Java installed, see Installing Sun JRE on RedHat Systems or Installing Sun JRE on Ubuntu Systems
for instructions.

Installing the DataStax Community Binaries on Linux
The quickest way to get going on a single node with Cassandra is to install the DataStax Community Edition binary
tarball packages. This allows you to install everything in a single location (such as your home directory), and does not
require root permissions.

DataStax Community is comprised of three components - The Apache Cassandra server, the DataStax portfolio demo
application, and DataStax OpsCenter (a web-based monitoring application for Cassandra).

Note
The instructions in this section are not intended for production installations, just for a quick start tutorial. See Planning
a Cassandra Cluster Deployment, Installing and Initializing a Cassandra Cluster, and Configuring and Starting a
Cassandra Cluster for production cluster setup best practices.

These instructions will walk you through setting up a self-contained, single-node instance of Cassandra in your home
directory (does not require root permissions).

Note
By downloading community software from DataStax you agree to the terms of the DataStax Community EULA (End
User License Agreement) posted on the DataStax web site.

1. In your home directory, create a directory called datastax.

$ cd $HOME

$ mkdir datastax

$ cd datastax

2. In the datastax directory download the Cassandra package (required), plus the OpsCenter package (optional).

For example, on Linux to get version 1.0.7 of DataStax Community and version 1.4 of OpsCenter:

$ wget http://downloads.datastax.com/community/dsc.tar.gz

$ wget http://downloads.datastax.com/community/opscenter.tar.gz

$ wget http://downloads.datastax.com/community/dsc-1.0.1-demo-bin.tar.gz

Installing the DataStax Community Binaries on Linux

3

http://www.datastax.com/products/community/eula

3. Unpack the distributions:

$ tar -xzvf dsc.tar.gz

$ tar -xzvf opscenter.tar.gz

$ tar -xzvf dsc-1.0.1-demo-bin.tar.gz

$ rm *.tar.gz

4. For convenience, set the following environment variables in your user environment. For example, to configure your
environment in your $HOME/.bashrc file:

a. Open your .bashrc file in a text editor (such as vi):

vi $HOME/.bashrc

b. Add the following lines to bottom of the file:

export CASSANDRA_HOME=$HOME/datastax/<dsc_package_name>
export DSCDEMO_HOME=$HOME/datastax/dsc-1.0.1/demos/portfolio_manager
export OPSC_HOME=$HOME/datastax/<opscenter_package_name>
export PATH="$PATH:$CASSANDRA_HOME/bin:$DSCDEMO_HOME/bin:$OPSC_HOME/bin"

For example: <dsc_package_name> = dsc-cassandra-1.0.7 and <opscenter_package_name> =
opscenter-1.4

c. Save and close the file.

d. Source the file.

source $HOME/.bashrc

5. Create the data and logging directory for Cassandra.

$ mkdir $HOME/datastax/cassandra-data

Configuring and Starting a Single-Node Cluster on Linux

1. Set the configuration properties needed to start your cluster in the $CASSANDRA_HOME/conf/cassandra.yaml
file. This will configure Cassandra to run a single-node cluster on the localhost and store all of its data files in your
home directory.

$ sed -i -e "s,initial_token:,initial_token: 0," \
 $CASSANDRA_HOME/conf/cassandra.yaml

$ sed -i -e "s,- /var/lib/cassandra/data,- $HOME/datastax/cassandra-data," \
 $CASSANDRA_HOME/conf/cassandra.yaml

$ sed -i -e "s,saved_caches_directory: /var/lib/cassandra/saved_caches, \
 saved_caches_directory: $HOME/datastax/cassandra-data/saved_caches," \
 $CASSANDRA_HOME/conf/cassandra.yaml

$ sed -i -e "s,commitlog_directory: /var/lib/cassandra/commitlog,commitlog_directory: \
 $HOME/datastax/cassandra-data/commitlog," $CASSANDRA_HOME/conf/cassandra.yaml

Configuring and Starting a Single-Node Cluster on Linux

4

2. Set the Cassandra server log location in the $CASSANDRA_HOME/conf/log4j-server.properties file to
the log to the cassandra-data directory you created earlier:

$ sed -i -e "s,log4j.appender.R.File=/var/log/cassandra/system.log, \
 log4j.appender.R.File=$HOME/datastax/cassandra-data/system.log," \
 $CASSANDRA_HOME/conf/log4j-server.properties

3. Configure the DataStax demo application to point to the correct Cassandra installation location:

$ sed -i -e "s,/usr/share/cassandra,$HOME/datastax/<dsc_package_name>," \
 $DSCDEMO_HOME/bin/pricer

4. Start the Cassandra server in the background.

$ cassandra

5. Check that your Cassandra ring is up and running:

$ nodetool ring -h localhost

6. For the next step, run the Portfolio Demo example application.

Installing the DataStax Community Binaries on Mac
DataStax supplies a tar download for Mac that can be used for development purposes (production deployments on Mac
are not currently supported). To install the DataStax Community server and sample applications on Mac, follow these
instructions:

1. Download the tar package for Mac from the DataStax website.

2. Move the tar package to your target directory and unpack the contents. An example of unpacking version 1.0.7 of
DataStax Community would be: tar –xzvf dsc-cassandra-1.0.7-bin.tar.gz.

3. If you want to take the default data and log file locations for Cassandra, you can proceed to starting up Cassandra
by going to the bin directory of the installation home directory and entering the command sudo ./cassandra. If
you want to configure Cassandra to use other directories for its data and log files, you can modify the
cassandra.yaml file (located in the /conf directory) and change the data_file_directories,
commitlog_directory, and saved_caches_directory parameters to point to your desired directory
locations.

4. Check that Cassandra is running by invoking the nodetool utility from the installation home directory:
./bin/nodetool ring –h localhost.

Installing the DataStax Community Binaries on Windows
DataStax provides a GUI installer for installing both OpsCenter and Cassandra on Windows. Simply download the
Windows installer for your chosen platform (32- or 64-bit Windows 7 or Windows Server 2008) from the DataStax
website and follow the installation wizard to install Cassandra, the sample applications, and OpsCenter.

Note
There is a dependency on the Visual C++ 2008 runtime (32-bit). However, Windows 7 and Windows 2008 Server R2
already have it installed. If needed, you can download it from
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=29.

Configuring and Starting DataStax OpsCenter
DataStax OpsCenter is a graphical web application that can be used to manage and monitor a Cassandra cluster. For
specific information on installing OpsCenter for your chosen platform, see the Installing the OpsCenter Dashboard
section of the online OpsCenter Documentation.

Installing the DataStax Community Binaries on Mac

5

http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=29
http://www.datastax.com/docs/opscenter/install_opscenter

Running the Portfolio Demo Sample Application
Your DataStax Community (DSC) installation contains a demo portfolio manager application that showcases how you
can use Apache Cassandra to back a real-time web application developed in Java and using the Cassandra Query
Language (CQL) JDBC driver.

The demo application is located in:

• RPM and Debian packaged installations: /usr/share/dse-demos/portfolio_manager

• Binary tar file installations: $DSCDEMO_HOME (<install_location>/dsc-1.0.1/demos/portfolio_manager`).

About the Portfolio Demo Use Case
The portfolio manager sample application is a financial application where users can actively create and manage a
portfolio of stocks. Each portfolio contains a list of stocks, the number of shares purchased, and the price at which the
shares were purchased. An overall value is maintained for each stock portfolio as well as the percentage of gain or loss
compared to the original stock purchase prices for a portfolio.

The application has a pricer utility which is meant to simulate an active feed of live stock market data. For each stock
ticker symbol, the application tracks the current stock price and historical market data (end-of-day price) for each stock
going back in time.

Running the Demo Web Application
Before you begin, make sure you have installed, configured, and started your Cassandra cluster. Also make sure you
have installed the DataStax Community Edition demo package using either the binary tarball distribution or the
RPM/Debian packaged installations (see Installing a Single-Node Instance of Cassandra or Installing Cassandra Using
the Packaged Releases).

1. Go to the portfolio manager demo directory.

cd $DSCDEMO_HOME

or in packaged installs:

cd /usr/share/dse-demos/portfolio_manager

Note
You must run the pricer utility from a directory where you have write permissions (such as your home
directory), or else run it as root or using sudo.

2. Run the ./bin/pricer utility to generate stock data for the application. To see all of the available options for
this utility:

./bin/pricer --help

The following examples will generate 100 days worth of historical data.

If running on a single node cluster on localhost:

./bin/pricer -o INSERT_PRICES

./bin/pricer -o UPDATE_PORTFOLIOS

./bin/pricer -o INSERT_HISTORICAL_PRICES -n 100

Running the Portfolio Demo Sample Application

6

4. Start the web service (must be in the $DSCDEMO_HOME/website directory to start).

$ cd $DSCDEMO_HOME/website

$ java -jar start.jar &

5. Open a browser and go to http://localhost:8983/portfolio (if running on the local machine) or
http://<webhost_ip>:8983/portfolio (if running remotely - specify the correct IP address of the remote
server).

This will open the Portfolio Manager demo web application home page.

Exploring the Sample Data Model
The data for the portfolio manager sample application is contained in a Cassandra keyspace called PortfolioDemo.

In that keyspace are four column families:

• Portfolio - One row per portfolio/customer where the column names are the stock ticker symbols and the column
values are the current stock price.

• StockHist - One row per stock ticker symbol with (time-ordered) dates for the column names and column values
are the end-of-day price for a particular day.

• Stocks - One row per stock ticker symbol with a static column name price and the column value is the current
stock value.

• HistLoss - One row per stock ticker symbol where the column name is the worst date in the stock's history in the
form of YYYY-MM-DD and the column value is the loss dollar amount.

Exploring the Sample Data Model

7

Looking at the Schema Definitions in Cassandra-CLI
The cassandra-cli program in a command-line interface for Cassandra. Using cassandra-cli you can explore
the PortfolioDemo keyspace and data model.

1. Start cassandra-cli and specify a Cassandra node to connect to. For example, if running a single-node
instance on localhost:

$ cassandra-cli -h localhost

2. Specify the keyspace you want to connect to:

[default@unknown] USE PortfolioDemo;

3. To see the keyspace and column family schema definitions:

[default@unknown] SHOW SCHEMA;

4. To select a row from the Stocks column family (by specifying the row key value of a stock ticker symbol):

[default@unknown] GET Stocks[GCO];

5. To exit cassandra-cli:

[default@unknown] exit;

DataStax Community Release Notes

What's New
Added new platform support (Windows 7 and Windows 2008 Server, both 32- and 64-bit) for Cassandra development.
The Windows MSI installer provides a full install, including OpsCenter, sets all the WIN services, creates a Windows
program group, and quickly starts the new version of DataStax OpsCenter (1.4).

Prerequisites
Dependency on the Visual C++ 2008 runtime (32-bit). However, Windows 7 and Windows 2008 Server R2 already have
it installed. If needed, download it from http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=29.

If you just want to learn more about Cassandra and how it works, see the following conceptual topics:

• Understanding the Cassandra Architecture

• Understanding the Cassandra Data Model

• Managing and Accessing Data in Cassandra

Understanding the Cassandra Architecture
A Cassandra instance is a collection of independent nodes that are configured together into a cluster. In a Cassandra
cluster, all nodes are peers, meaning there is no master node or centralized management process. A node joins a
Cassandra cluster based on certain aspects of its configuration. This section explains those aspects of the Cassandra
cluster architecture.

About Internode Communications (Gossip)
Cassandra uses a protocol called gossip to discover location and state information about the other nodes participating in
a Cassandra cluster. Gossip is a peer-to-peer communication protocol in which nodes periodically exchange state
information about themselves and about other nodes they know about.

Looking at the Schema Definitions in Cassandra-CLI

8

http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=29

In Cassandra, the gossip process runs every second and exchanges state messages with up to three other nodes in the
cluster. The nodes exchange information about themselves and about the other nodes that they have gossiped about,
so all nodes quickly learn about all other nodes in the cluster. A gossip message has a version associated with it, so that
during a gossip exchange, older information is overwritten with the most current state for a particular node.

About Cluster Membership and Seed Nodes
When a node first starts up, it looks at its configuration file to determine the name of the Cassandra cluster it belongs to
and which node(s), called seeds, to contact to obtain information about the other nodes in the cluster. These cluster
contact points are configured in the cassandra.yaml configuration file for a node.

To prevent partitions in gossip communications, all nodes in a cluster should have the same list of seed nodes listed in
their configuration file. This is most critical the first time a node starts up. By default, a node will remember other nodes it
has gossiped with between subsequent restarts.

Note
The seed node designation has no purpose other than bootstrapping the gossip process for new nodes joining the
cluster. Seed nodes are not a single point of failure, nor do they have any other special purpose in cluster operations
beyond the bootstrapping of nodes.

To know what range of data it is responsible for, a node must also know its own token and those of the other nodes in
the cluster. When initializing a new cluster, you should generate tokens for the entire cluster and assign an initial token
to each node before starting up. Each node will then gossip its token to the others. See About Data Partitioning in
Cassandra for more information about partitioners and tokens.

About Failure Detection and Recovery
Failure detection is a method for locally determining, from gossip state, if another node in the system is up or down.
Failure detection information is also used by Cassandra to avoid routing client requests to unreachable nodes whenever
possible. (Cassandra can also avoid routing requests to nodes that are alive, but performing poorly, through the
dynamic snitch.)

The gossip process tracks heartbeats from other nodes both directly (nodes gossiping directly to it) and indirectly (nodes
heard about secondhand, thirdhand, and so on). Rather than have a fixed threshold for marking nodes without a
heartbeat as down, Cassandra uses an accrual detection mechanism to calculate a per-node threshold that takes into
account network conditions, workload, or other conditions that might affect perceived heartbeat rate. During gossip
exchanges, every node maintains a sliding window of inter-arrival times of gossip messages from other nodes in the
cluster. The value of phi is based on the distribution of inter-arrival time values across all nodes in the cluster. In
Cassandra, configuring the phi_convict_threshold property adjusts the sensitivity of the failure detector. The default
value is fine for most situations, but DataStax recommends increasing it to 12 for Amazon EC2 due to the network
congestion frequently experienced on that platform.

Node failures can result from various causes such as hardware failures, network outages, and so on. Node outages are
often transient but can last for extended intervals. A node outage rarely signifies a permanent departure from the cluster,
and therefore does not automatically result in permanent removal of the node from the ring. Other nodes will still try to
periodically initiate gossip contact with failed nodes to see if they are back up. To permanently change a node's
membership in a cluster, administrators must explicitly add or remove nodes from a Cassandra cluster using the
nodetool utility.

When a node comes back online after an outage, it may have missed writes for the replica data it maintains. Once the
failure detector marks a node as down, missed writes are stored by other replicas if hinted handoff is enabled (for a
period of time, anyways). However, it is possible that some writes were missed between the interval of a node actually
going down and when it is detected as down. Or if a node is down for longer than max_hint_window_in_ms (one hour by
default), hints will no longer be saved. For that reason, it is best practice to routinely run nodetool repair on all nodes to
ensure they have consistent data, and to also run repair after recovering a node that has been down for an extended
period.

About Cluster Membership and Seed Nodes

9

About Data Partitioning in Cassandra
When you start a Cassandra cluster, you must choose how the data will be divided across the nodes in the cluster. This
is done by choosing a partitioner for the cluster.

In Cassandra, the total data managed by the cluster is represented as a circular space or ring. The ring is divided up
into ranges equal to the number of nodes, with each node being responsible for one or more ranges of the overall data.
Before a node can join the ring, it must be assigned a token. The token determines the node's position on the ring and
the range of data it is responsible for.

Column family data is partitioned across the nodes based on the row key. To determine the node where the first replica
of a row will live, the ring is walked clockwise until it locates the node with a token value greater than that of the row key.
Each node is responsible for the region of the ring between itself (inclusive) and its predecessor (exclusive). With the
nodes sorted in token order, the last node is considered the predecessor of the first node; hence the ring representation.

For example, consider a simple 4 node cluster where all of the row keys managed by the cluster were numbers in the
range of 0 to 100. Each node is assigned a token that represents a point in this range. In this simple example, the token
values are 0, 25, 50, and 75. The first node, the one with token 0, is responsible for the wrapping range (75-0). The
node with the lowest token also accepts row keys less than the lowest token and more than the highest token.

About Partitioning in Multi-Data Center Clusters
In multi-data center deployments, replica placement is calculated per data center when using the
NetworkTopologyStrategy replica placement strategy. In each data center (or replication group) the first replica for
a particular row is determined by the token value assigned to a node. Additional replicas in the same data center are
placed by walking the ring clockwise until it reaches the first node in another rack.

About Data Partitioning in Cassandra

10

If you do not calculate partitioner tokens so that the data ranges are evenly distributed for each data center, you could
end up with uneven data distribution within a data center.

The goal is to ensure that the nodes for each data center have token assignments that evenly divide the overall range.
Otherwise, you could end up with nodes in each data center that own a disproportionate number of row keys. Each data
center should be partitioned as if it were its own distinct ring, however token assignments within the entire cluster cannot
conflict with each other (each node must have a unique token). See Calculating Tokens for a Multi-Data Center Cluster
for strategies on how to generate tokens for multi-data center clusters.

About Data Partitioning in Cassandra

11

Understanding the Partitioner Types
Unlike almost every other configuration choice in Cassandra, the partitioner may not be changed without reloading all of
your data. It is important to choose and configure the correct partitioner before initializing your cluster.

Cassandra offers a number of partitioners out-of-the-box, but the random partitioner is the best choice for most
Cassandra deployments.

About the Random Partitioner
The RandomPartitioner is the default partitioning strategy for a Cassandra cluster, and in almost all cases is the
right choice.

Random partitioning uses consistent hashing to determine which node will store a particular row. Unlike naive
modulus-by-node-count, consistent hashing ensures that when nodes are added to the cluster, the minimum possible
set of data is affected.

To distribute the data evenly across the number of nodes, a hashing algorithm creates an MD5 hash value of the row
key. The possible range of hash values is from 0 to 2**127. Each node in the cluster is assigned a token that represents
a hash value within this range. A node then owns the rows with a hash value less than its token number. For single data
center deployments, tokens are calculated by dividing the hash range by the number of nodes in the cluster. For multi
data center deployments, tokens are calculated per data center (the hash range should be evenly divided for the nodes
in each replication group).

Understanding the Partitioner Types

12

The primary benefit of this approach is that once your tokens are set appropriately, data from all of your column families
is evenly distributed across the cluster with no further effort. For example, one column family could be using user names
as the row key and another column family timestamps, but the row keys from each individual column family are still
spread evenly. This also means that read and write requests to the cluster will also be evenly distributed.

Another benefit of using random partitioning is the simplification of load balancing a cluster. Because each part of the
hash range will receive an equal number of rows on average, it is easier to correctly assign tokens to new nodes.

About Ordered Partitioners
Using an ordered partitioner ensures that row keys are stored in sorted order. Unless absolutely required by your
application, DataStax strongly recommends choosing the random partitioner over an ordered partitioner.

Using an ordered partitioner allows range scans over rows, meaning you can scan rows as though you were moving a
cursor through a traditional index. For example, if your application has user names as the row key, you can scan rows
for users whose names fall between Jake and Joe. This type of query would not be possible with randomly partitioned
row keys, since the keys are stored in the order of their MD5 hash (not sequentially).

Although having the ability to do range scans on rows sounds like a desirable feature of ordered partitioners, there are
ways to achieve the same functionality using column family indexes. Most applications can be designed with a data
model that supports ordered queries as slices over a set of columns rather than range scans over a set of rows.

Using an ordered partitioner is not recommended for the following reasons:

• Sequential writes can cause hot spots. If your application tends to write or update a sequential block of rows at
a time, then the writes will not be distributed across the cluster; they will all go to one node. This is frequently a
problem for applications dealing with timestamped data.

• More administrative overhead to load balance the cluster. An ordered partitioner requires administrators to
manually calculate token ranges based on their estimates of the row key distribution. In practice, this requires
actively moving node tokens around to accommodate the actual distribution of data once it is loaded.

• Uneven load balancing for multiple column families. If your application has multiple column families, chances
are that those column families have different row keys and different distributions of data. An ordered partitioner
than is balanced for one column family may cause hot spots and uneven distribution for another column family in
the same cluster.

There are three choices of built-in ordered partitioners that come with Cassandra. Note that the
OrderPreservingPartitioner and CollatingOrderPreservingPartitioner are deprecated as of
Cassandra 0.7 in favor of the ByteOrderedPartitioner:

• ByteOrderedPartitioner - Row keys are stored in order of their raw bytes rather than converting them to encoded
strings. Tokens are calculated by looking at the actual values of your row key data and using a hexadecimal
representation of the leading character(s) in a key. For example, if you wanted to partition rows alphabetically, you
could assign an A token using its hexadecimal representation of 41.

• OrderPreservingPartitioner - Row keys are stored in order based on the UTF-8 encoded value of the row keys.
Requires row keys to be UTF-8 encoded strings.

• CollatingOrderPreservingPartitioner - Row keys are stored in order based on the United States English locale
(EN_US). Also requires row keys to be UTF-8 encoded strings.

About Replication in Cassandra
Replication is the process of storing copies of data on multiple nodes to ensure reliability and fault tolerance. When you
create a keyspace in Cassandra, you must decide the replica placement strategy: the number of replicas and how those
replicas are distributed across nodes in the cluster. The replication strategy relies on the cluster-configured snitch to
help it determine the physical location of nodes and their proximity to each other.

The total number of replicas across the cluster is often referred to as the replication factor. A replication factor of 1
means that there is only one copy of each row. A replication factor of 2 means two copies of each row. All replicas are
equally important; there is no primary or master replica in terms of how read and write requests are handled.

About Ordered Partitioners

13

As a general rule, the replication factor should not exceed the number of nodes in the cluster. However, it is possible to
increase replication factor, and then add the desired number of nodes afterwards. When replication factor exceeds the
number of nodes, writes will be rejected, but reads will be served as long as the desired consistency level can be met.

About Replica Placement Strategy
The replica placement strategy determines how replicas for a keyspace are distributed across the cluster. The replica
placement strategy is set when you create a keyspace.

There are a number of strategies to choose from based on your goals and the information you have about where nodes
are located.

SimpleStrategy
SimpleStrategy is the default replica placement strategy when creating a keyspace using the Cassandra CLI. Other
interfaces, such as the CQL utility, require you to explicitly specify a strategy.

SimpleStrategy places the first replica on a node determined by the partitioner. Additional replicas are placed on the
next nodes clockwise in the ring without considering rack or data center location.

NetworkTopologyStrategy

About Replica Placement Strategy

14

NetworkTopologyStrategy is the preferred replication placement strategy when you have information about how
nodes are grouped in your data center, or you have (or plan to have) your cluster deployed across multiple data centers.
This strategy allows you to specify how many replicas you want in each data center.

When deciding how many replicas to configure in each data center, the primary considerations are (1) being able to
satisfy reads locally, without incurring cross-datacenter latency, and (2) failure scenarios.

The two most common ways to configure multiple data center clusters are:

• Two replicas in each data center. This configuration tolerates the failure of a single node per replication group, and
still allows local reads at a consistency level of ONE.

• Three replicas in each data center. This configuration tolerates the failure of a one node per replication group at a
strong consistency level of LOCAL_QUORUM, or tolerates multiple node failures per data center using consistency
level ONE.

Asymmetrical replication groupings are also possible depending on your use case. For example, you may want to have
three replicas per data center to serve real-time application requests, and then have a single replica in a separate data
center designated to running analytics. In Cassandra, the term data center is synonymous with replication group - it is a
grouping of nodes configured together for replication purposes. It does not have to be a physical data center.

With NetworkTopologyStrategy, replica placement is determined independently within each data center (or
replication group). The first replica per data center is placed according to the partitioner (same as with
SimpleStrategy). Additional replicas in the same data center are then determined by walking the ring clockwise until
a node in a different rack from the previous replica is found. If there is no such node, additional replicas will be placed in
the same rack. NetworkTopologyStrategy prefers to place replicas on distinct racks if possible. Nodes in the same
rack (or similar physical grouping) can easily fail at the same time due to power, cooling, or network issues.

Here is an example of how NetworkTopologyStrategy would place replicas spanning two data centers with a total
replication factor of 4 (two replicas in Data Center 1 and two replicas in Data Center 2):

About Replica Placement Strategy

15

About Replica Placement Strategy

16

Notice how tokens are assigned to alternating racks.

NetworkTopologyStrategy relies on a properly configured snitch to place replicas correctly across data centers and
racks, so it is important to configure your cluster to use a snitch that can correctly determine the locations of nodes in
your network.

Note
NetworkTopologyStrategy should be used in place of the OldNetworkTopologyStrategy, which only
supports a limited configuration of exactly 3 replicas across 2 data centers, with no control over which data center gets
two replicas for any given row key. Some rows will have two replicas in the first and one in the second, while others
will have two in the second and one in the first.

About Snitches
The snitch is a configurable component of a Cassandra cluster used to define how the nodes are grouped together
within the overall network topology (such as rack and data center groupings). Cassandra uses this information to route
inter-node requests as efficiently as possible within the confines of the replica placement strategy. The snitch does not
affect requests between the client application and Cassandra (it does not control which node a client connects to).

Snitches are configured for a Cassandra cluster in the cassandra.yaml configuration file. All nodes in a cluster should
use the same snitch configuration. When assigning tokens, assign them to alternating racks. For example: rack1, rack2,
rack3, rack1, rack2, rack3, and so on.

About Snitches

17

The following snitches are available:

SimpleSnitch
The SimpleSnitch (the default) is appropriate if you have no rack or data center information available. Single-data center
deployments (or single-zone in public clouds) usually fall into this category.

If using this snitch, use replication_factor=<#> when defining your keyspace strategy_options. This snitch does
not recognize data center or rack information.

DseSimpleSnitch
DseSimpleSnitch is used in DataStax Enterprise (DSE) deployments only. It logically configures Hadoop analytics nodes
in a separate data center from pure Cassandra nodes in order to segregate analytic and real-time workloads. It can be
used for mixed-workload DSE clusters located in one physical data center. It can also be used for multi-data center DSE
clusters that have exactly 2 data centers, with all analytic nodes in one data center and all Cassandra real-time nodes in
another data center.

If using this snitch, use Analytics or Cassandra as your data center names when defining your keyspace
strategy_options.

RackInferringSnitch
RackInferringSnitch infers the topology of the network by analyzing the node IP addresses. This snitch assumes that the
second octet identifies the data center where a node is located, and the third octet identifies the rack.

SimpleSnitch

18

If using this snitch, use the second octet number of your node IPs as your data center names when defining your
keyspace strategy_options. For example, 100 would be the data center name.

PropertyFileSnitch
PropertyFileSnitch determines the location of nodes by referring to a user-defined description of the network
details located in the property file cassandra-topology.properties. This snitch is best when your node IPs are
not uniform or you have complex replication grouping requirements. See Configuring the PropertyFileSnitch for more
information.

If using this snitch, you can define your data center names to be whatever you want. Just make sure the data center
names you define in the cassandra-topology.properties file correlates to what you name your data centers in
your keyspace strategy_options.

EC2Snitch
EC2Snitch is for simple cluster deployments on Amazon EC2 where all nodes in the cluster are within the same region.
Instead of using the node's IP address to infer node location, this snitch uses the AWS API to request the region and
availability zone of a node. The region is treated as the data center and the availability zones are treated as racks within
the data center. For example, if a node is in us-east-1a, us-east is the data center name and 1a is the rack
location.

If using this snitch, use the EC2 region name (for example,``us-east``) as your data center name when defining your
keyspace strategy_options.

EC2MultiRegionSnitch
EC2MultiRegionSnitch is for cluster deployments on Amazon EC2 where the cluster spans multiple regions. Instead of
using the node's IP address to infer node location, this snitch uses the AWS API to request the region and availability
zone of a node. Regions are treated as data centers and availability zones are treated as racks within a data center. For
example, if a node is in us-east-1a, us-east is the data center name and 1a is the rack location.

If using this snitch, you must configure each Cassandra node so that listen_address is set to the private IP address or
the node, and broadcast_address is set to the public IP address of the node. This allows Cassandra nodes in one EC2
region to bind to nodes in another region, thus enabling multi-data center support.

If using this snitch, use the EC2 region name (for example,``us-east``) as your data center names when defining your
keyspace strategy_options.

About Dynamic Snitching
By default, all snitches also use a dynamic snitch layer that monitors read latency and, when possible, routes requests
away from poorly-performing nodes. The dynamic snitch is enabled by default, and is recommended for use in most
deployments.

Dynamic snitch thresholds can be configured in the cassandra.yaml configuration file for a node.

About Client Requests in Cassandra

PropertyFileSnitch

19

All nodes in Cassandra are peers. A client read or write request can go to any node in the cluster. When a client
connects to a node and issues a read or write request, that node serves as the coordinator for that particular client
operation.

The job of the coordinator is to act as a proxy between the client application and the nodes (or replicas) that own the
data being requested. The coordinator determines which nodes in the ring should get the request based on the cluster
configured partitioner and replica placement strategy.

About Write Requests
For writes, the coordinator sends the write to all replicas that own the row being written. As long as all replica nodes are
up and available, they will get the write regardless of the consistency level specified by the client. The write consistency
level determines how many replica nodes must respond with a success acknowledgement in order for the write to be
considered successful.

For example, in a single data center 10 node cluster with a replication factor of 3, an incoming write will go to all 3 nodes
that own the requested row. If the write consistency level specified by the client is ONE, the first node to complete the
write responds back to the coordinator, which then proxies the success message back to the client. A consistency level
of ONE means that it is possible that 2 of the 3 replicas could miss the write if they happened to be down at the time the
request was made. If a replica misses a write, the row will be made consistent later via one of Cassandra's built-in repair
mechanisms: hinted handoff, read repair or anti-entropy node repair.

Also see About Writes in Cassandra for more information about how Cassandra processes writes locally at the node
level.

About Multi-Data Center Write Requests

About Write Requests

20

In multi data center deployments, Cassandra optimizes write performance by choosing one coordinator node in each
remote data center to handle the requests to replicas within that data center. The coordinator node contacted by the
client application only needs to forward the write request to one node in each remote data center.

If using a consistency level of ONE or LOCAL_QUORUM, only the nodes in the same data center as the coordinator
node must respond to the client request in order for the request to succeed. This way, geographical latency does not
impact client request response times.

About Read Requests
For reads, there are two types of read requests that a coordinator can send to a replica; a direct read request and a
background read repair request. The number of replicas contacted by a direct read request is determined by the
consistency level specified by the client. Background read repair requests are sent to any additional replicas that did not
receive a direct request. Read repair requests ensure that the requested row is made consistent on all replicas.

Thus, the coordinator first contacts the replicas specified by the consistency level. The coordinator will send these
requests to the replicas that are currently responding most promptly. The nodes contacted will respond with the
requested data; if multiple nodes are contacted, the rows from each replica are compared in memory to see if they are
consistent. If they are not, then the replica that has the most recent data (based on the timestamp) is used by the
coordinator to forward the result back to the client.

To ensure that all replicas have the most recent version of frequently-read data, the coordinator also contacts and
compares the data from all the remaining replicas that own the row in the background, and if they are inconsistent,
issues writes to the out-of-date replicas to update the row to reflect the most recently written values. This process is
known as read repair. Read repair can be configured per column family (using read_repair_chance), and is enabled by
default.

For example, in a cluster with a replication factor of 3, and a read consistency level of QUORUM, 2 of the 3 replicas for
the given row are contacted to fulfill the read request. Supposing the contacted replicas had different versions of the
row, the replica with the most recent version would return the requested data. In the background, the third replica is
checked for consistency with the first two, and if needed, the most recent replica issues a write to the out-of-date
replicas.

About Read Requests

21

Also see About Reads in Cassandra for more information about how Cassandra processes reads locally at the node
level.

Planning a Cassandra Cluster Deployment
When planning a Cassandra cluster deployment, you should first have a good idea of the initial volume of data you plan
to store, as well as what your typical application workload will be.

Selecting Hardware
As with any application, choosing appropriate hardware depends on selecting the right balance of the following
resources: Memory, CPU, Disk, and Network.

Memory
The more memory a Cassandra node has, the better read performance will be. More RAM allows for larger cache sizes,
reducing disk I/O for reads. More RAM also allows for larger memory tables (memtables) to hold the most recently
written data. Larger memtables lead to a fewer number of SSTables being flushed to disk and fewer files to scan during
a read. The minimum that should be considered for a production deployment is 4GB, with 8GB-16GB being the most
common, and many production clusters using 32GB or more per node. The ideal amount of RAM depends on the
anticipated size of your hot data.

CPU
Insert-heavy workloads will actually be CPU-bound in Cassandra before being memory-bound. Cassandra is highly
concurrent and will benefit from many CPU cores. Currently, nodes with 8 CPU cores typically provide the best
price/performance ratio. On virtualized machines, consider using a cloud provider that allows CPU bursting.

Planning a Cassandra Cluster Deployment

22

Disk
When choosing disks, you should consider both capacity (how much data you plan to store) and I/O (the write/read
throughput rate). Most workloads are best served by using less expensive SATA disks and scaling disk capacity and I/O
by adding more nodes (with a lot of RAM).

Solid-state drives (SSDs) are also a valid alternative for Cassandra. Cassandra's sequential, streaming write patterns
minimize the undesirable effects of write amplification associated with SSDs.

Cassandra persists data to disk for two different purposes: it constantly appends to a commit log for write durability, and
periodically flushes in-memory data structures to SSTable data files for persistent storage of column family data. It is
highly recommended to use a different disk device for the commit log than for the SSTables. The commit log does not
need much capacity, but throughput should be enough to accommodate your expected write load. Data directories
should be large enough to house all of your data, but with enough throughput to handle your expected (non-cached)
read load and the disk I/O required by flushing and compaction.

During compaction and node repair, disk utilization can - depending on the compaction settings used - increase
substantially in your data directory volume. For this reason, DataStax recommends leaving an adequate (10-50%)
amount of free space available on a node.

For disk fault tolerance and data redundancy, there are two reasonable approaches:

• Use RAID0 on your data volume and rely on Cassandra replication for disk failure tolerance. If you lose a disk on
a node, you can recover lost data through Cassandra's built-in repair.

• Use RAID10 to avoid large repair operations after a single disk failure.
If you have disk capacity to spare, DataStax recommends using RAID10. If disk capacity is a bottleneck for your
workload, use RAID0.

Network
Since Cassandra is a distributed data store, it puts load on the network to handle read/write requests and replication of
data across nodes. You want to choose reliable, redundant network interfaces and make sure that your network can
handle traffic between nodes without bottlenecks.

Cassandra is efficient at routing requests to replicas that are geographically closest to the coordinator node handling the
request. Cassandra will pick a replica in the same rack if possible, and will choose replicas located in the same data
center over replicas in a remote data center.

Cassandra uses the following ports. If using a firewall, make sure that nodes within a cluster can reach each other on
these ports:

Port Description
7000 Cassandra intra-node communication port

9160 Thrift client port

7199 JMX monitoring port (8080 in prior releases)

Planning an Amazon EC2 Cluster
Cassandra clusters can be deployed on cloud infrastructures such as Amazon EC2.

For production Cassandra clusters on EC2, use L or XL instances with local storage. RAID0 the ephemeral disks, and
put both the data directory and the commit log on that volume. This has proved to be better in practice than putting the
commit log on the root volume (which is also a shared resource). For data redundancy, consider deploying your
Cassandra cluster across multiple availability zones or using EBS volumes to store your Cassandra backup files.

EBS volumes are not recommended for Cassandra data volumes - their network performance and disk I/O are not good
fits for Cassandra for the following reasons:

Disk

23

http://en.wikipedia.org/wiki/Write_amplification

• EBS volumes contend directly for network throughput with standard packets. This means that EBS throughput
is likely to fail if you saturate a network link.

• EBS volumes have unreliable performance. I/O performance can be exceptionally slow, causing the system to
backload reads and writes until the entire cluster becomes unresponsive.

• Adding capacity by increasing the number of EBS volumes per host does not scale. You can easily surpass
the ability of the system to keep effective buffer caches and concurrently serve requests for all of the data it is
responsible for managing.

DataStax provides an Amazon Machine Image (AMI) to allow you to quickly deploy a multi-node Cassandra cluster on
Amazon EC2. The DataStax AMI initializes all nodes in one availability zone using the SimpleSnitch.

If you want an EC2 cluster that spans multiple regions and availability zones, do not use the DataStax AMI. Instead,
initialize your EC2 instances for each Cassandra node and then configure the cluster as a multi data center cluster.

Capacity Planning
The estimates in this section can be used as guidelines for planning the size of your Cassandra cluster based on the
data you plan to store. To estimate capacity, you should first have a good understanding of the sizing of the raw data
you plan to store, and how you plan to model your data in Cassandra (number of column families, rows, columns per
row, and so on).

Calculating Usable Disk Capacity
To calculate how much data your Cassandra nodes can hold, calculate the usable disk capacity per node and then
multiply that by the number of nodes in your cluster. Remember that in a production cluster, you will typically have your
commit log and data directories on different disks. This calculation is for estimating the usable capacity of the data
volume.

Start with the raw capacity of the physical disks:

raw_capacity = disk_size * number_of_disks

Account for file system formatting overhead (roughly 10 percent) and the RAID level you are using. For example, if using
RAID-10, the calculation would be:

(raw_capacity * 0.9) / 2 = formatted_disk_space

During normal operations, Cassandra routinely requires disk capacity for compaction and repair operations. For optimal
performance and cluster health, DataStax recommends that you do not fill your disks to capacity, but run at 50-80
percent capacity. With this in mind, calculate the usable disk space as follows (example below uses 50%):

formatted_disk_space * 0.5 = usable_disk_space

Calculating User Data Size
As with all data storage systems, the size of your raw data will be larger once it is loaded into Cassandra due to storage
overhead. On average, raw data will be about 2 times larger on disk after it is loaded into the database, but could be
much smaller or larger depending on the characteristics of your data and column families. The calculations in this
section account for data persisted to disk, not for data stored in memory.

• Column Overhead - Every column in Cassandra incurs 15 bytes of overhead. Since each row in a column family
can have different column names as well as differing numbers of columns, metadata is stored for each column.
For counter columns and expiring columns, add an additional 8 bytes (23 bytes column overhead). So the total
size of a regular column is:

total_column_size = column_name_size + column_value_size + 15

• Row Overhead - Just like columns, every row also incurs some overhead when stored on disk. Every row in
Cassandra incurs 23 bytes of overhead.

Capacity Planning

24

• Primary Key Index - Every column family also maintains a primary index of its row keys. Primary index overhead
becomes more significant when you have lots of skinny rows. Sizing of the primary row key index can be
estimated as follows (in bytes):

primary_key_index = number_of_rows * (32 + average_key_size)

• Replication Overhead - The replication factor obviously plays a role in how much disk capacity is used. For a
replication factor of 1, there is no overhead for replicas (as only one copy of your data is stored in the cluster). If
replication factor is greater than 1, then your total data storage requirement will include replication overhead.

replication_overhead = total_data_size * (replication_factor - 1)

Choosing Node Configuration Options
A major part of planning your Cassandra cluster deployment is understanding and setting the various node configuration
properties. This section explains the various configuration decisions that need to be made before deploying a
Cassandra cluster, be it a single-node, multi-node, or multi-data center cluster.

These properties mentioned in this section are set in the cassandra.yaml configuration file. Each node should be
correctly configured before starting it for the first time.

Storage Settings
By default, a node is configured to store the data it manages in /var/lib/cassandra. In a production cluster
deployment, you should change the commitlog_directory so it is on a different disk device than the data_file_directories.

Gossip Settings
The gossip settings control a nodes participation in a cluster and how the node is known to the cluster.

Property Description
cluster_name Name of the cluster that this node is joining. Should be the same for every node in

the cluster.

listen_address The IP address or hostname that other Cassandra nodes will use to connect to this
node. Should be changed from localhost to the public address for the host.

seeds A comma-delimited list of node IP addresses used to bootstrap the gossip process.
Every node should have the same list of seeds. In multi data center clusters, the
seed list should include a node from each data center.

storage_port The intra-node communication port (default is 7000). Should be the same for every
node in the cluster.

initial_token The initial token is used to determine the range of data this node is responsible for.

Purging Gossip State on a Node
Gossip information is also persisted locally by each node to use immediately next restart without having to wait for
gossip. To clear gossip history on node restart (for example, if node IP addresses have changed), add the following line
to the cassandra-env.sh file. This file is located in /usr/share/cassandra or $CASSANDRA_HOME/conf in
Cassandra installations. This file is located in /etc/brisk/cassandra or
$BRISK_HOME/resources/cassandra/conf in Brisk installations.

-Dcassandra.load_ring_state=false

Partitioner Settings
When you deploy a Cassandra cluster, you need to make sure that each node is responsible for roughly an equal
amount of data. This is also known as load balancing. This is done by configuring the partitioner for each node, and

Choosing Node Configuration Options

25

correctly assigning the node an initial_token value.

DataStax strongly recommends using the RandomPartitioner (the default) for all cluster deployments. Assuming use of
this partitioner, each node in the cluster is assigned a token that represents a hash value within the range of 0 to 2**127.

For clusters where all nodes are in a single data center, you can calculate tokens by dividing the range by the total
number of nodes in the cluster. In multi-data center deployments, tokens should be calculated such that each data
center is individually load balanced as well. See Calculating Tokens for the different approaches to generating tokens for
nodes in single and multi-data center clusters.

Snitch Settings
The snitch is responsible for knowing the location of nodes within your network topology. This affects where replicas are
placed as well as how requests are routed between replicas. The endpoint_snitch property configures the snitch for a
node. All nodes should have the exact same snitch configuration.

For a single data center (or single node) cluster, using the default SimpleSnitch is usually sufficient. However, if you plan
to expand your cluster at a later time to multiple racks and data centers, it will be easier if you choose a rack and data
center aware snitch from the start. All snitches are compatible with all replica placement strategies.

Configuring the PropertyFileSnitch
The PropertyFileSnitch requires you to define network details for each node in the cluster in a
cassandra-topology.properties configuration file. A sample of this file is located in
/etc/cassandra/conf/cassandra.yaml in packaged installations or
$CASSANDRA_HOME/conf/cassandra.yaml in binary installations.

Every node in the cluster should be described in this file, and this file should be exactly the same on every node in the
cluster if you are using the PropertyFileSnitch.

For example, supposing you had non-uniform IPs and two physical data centers with two racks in each, and a third
logical data center for replicating analytics data:

Data Center One

175.56.12.105=DC1:RAC1
175.50.13.200=DC1:RAC1
175.54.35.197=DC1:RAC1

120.53.24.101=DC1:RAC2
120.55.16.200=DC1:RAC2
120.57.102.103=DC1:RAC2

Data Center Two

110.56.12.120=DC2:RAC1
110.50.13.201=DC2:RAC1
110.54.35.184=DC2:RAC1

50.33.23.120=DC2:RAC2
50.45.14.220=DC2:RAC2
50.17.10.203=DC2:RAC2

Analytics Replication Group

172.106.12.120=DC3:RAC1
172.106.12.121=DC3:RAC1
172.106.12.122=DC3:RAC1

Snitch Settings

26

default for unknown nodes
default=DC3:RAC1

If using this snitch, you can define your data center and rack names to be whatever you want. Just make sure the data
center names you define in the cassandra-topology.properties file correlates to what you name your data
centers in your keyspace strategy_options.

Choosing Keyspace Replication Options
When you create a keyspace, you must define the replica placement strategy and the number of replicas you want.
DataStax recommends always choosing NetworkTopologyStrategy for both single and multi-data center clusters.
It is as easy to use as SimpleStrategy and allows for expansion to multiple data centers in the future, should that
become useful. It is much easier to configure the most flexible replication strategy up front, than to reconfigure
replication after you have already loaded data into your cluster.

NetworkTopologyStrategy takes as options the number of replicas you want per data center. Even for single data
center (or single node) clusters, you can use this replica placement strategy and just define the number of replicas for
one data center. For example (using cassandra-cli):

[default@unknown] CREATE KEYSPACE test
WITH placement_strategy = 'NetworkTopologyStrategy'
AND strategy_options=[{us-east:6}];

Or for a multi-data center cluster:

[default@unknown] CREATE KEYSPACE test
WITH placement_strategy = 'NetworkTopologyStrategy'
AND strategy_options=[{DC1:6,DC2:6,DC3:3}];

When declaring the keyspace strategy_options, what you name your data centers depends on the snitch you have
chosen for your cluster. The data center names must correlate to the snitch you are using in order for replicas to be
placed in the correct location.

As a general rule, the number of replicas should not exceed the number of nodes in a replication group. However, it is
possible to increase the number of replicas, and then add the desired number of nodes afterwards. When the replication
factor exceeds the number of nodes, writes will be rejected, but reads will still be served as long as the desired
consistency level can be met.

Installing and Initializing a Cassandra Cluster
Installing and initializing a Cassandra cluster involves installing the Cassandra software on each node, and configuring
each node so that it is prepared to join the cluster (see Planning a Cassandra Cluster Deployment for considerations on
choosing the right configuration options for your environment). After each node is installed and configured, start each
node sequentially beginning with the seed node(s).

Installing Cassandra Using the Packaged Releases
DataStax Community Edition provides RedHat/CentOS and Debian/Ubuntu packaged releases for Cassandra on Linux.
rpm and deb packages are currently supported through the yum and apt package management tools.

DataStax also provides a GUI Windows installation package for Microsoft Windows and a tar package for Mac. For more
information on Windows and Mac installations, see the DataStax Community Install Instructions.

What follows are instructions on installing Cassandra on Linux using DataStax supplied packages.

Creating the Cassandra User and Configuring sudo
The packages install and run Cassandra as the cassandra user. The best practice is to create the cassandra user
and add that user to the sodoers list. Then install and run as the cassandra user using sudo. For example (as root):

Choosing Keyspace Replication Options

27

1. Add the cassandra user and set its password:

useradd cassandra

passwd cassandra

2. Edit /etc/sudoers and add the following line:

cassandra ALL=(ALL) ALL

3. Change to the Cassandra user:

su - cassandra

4. Proceed with your package installation.

Installing Cassandra RPM Packages
DataStax provides yum repositories for CentOS and RedHat Enterprise Linux 5 and 6 and Fedora 12, 13 and 14. These
instructions assume that you have the yum package management application installed, and that you have sudo (or root)
access on the machine where you are installing.

Note
By downloading community software from DataStax you agree to the terms of the DataStax Community EULA (end
user license agreement) posted on the DataStax web site.

1. Make sure you have EPEL (Extra Packages for Enterprise Linux) installed. EPEL contains dependent packages required by
DSE, such as jna and jpackage-utils:

$ sudo rpm -Uvh http://download.fedora.redhat.com/pub/epel/5/i386/epel-release-5-4.noarch.rpm

2. Add a yum repository specification for the DataStax repository in /etc/yum.repos.d. For example:

$ sudo vi /etc/yum.repos.d/datastax.repo

3. In this file add the following lines for the DataStax repository:

[datastax]
name= DataStax Repo for Apache Cassandra
baseurl=http://rpm.datastax.com/community
enabled=1
gpgcheck=0

4. Install the package using yum.

$ sudo yum install dsc

This installs the Cassandra, DataStax Community demos, and OpsCenter packages.

Installing Sun JRE on RedHat Systems
DataStax recommends installing the most recently released version of the Oracle Sun Java Runtime Environment
(JRE), also referred to as the Java Virtual Machine (JVM). Versions earlier than 1.6.0_19 should not be used.

The rpm packages install the OpenJDK Java Runtime Environment (JRE) instead of the Oracle Sun JRE. After installing
using the rpm packaged releases, configure your operating system to use the Oracle Sun JRE instead of OpenJDK.

1. Check which version of the JRE your system is using. If your system is using the OpenJDK Runtime Environment,
you will need to change it to use the Oracle Sun JRE.

$ java -version

Installing Cassandra RPM Packages

28

http://www.datastax.com/products/community/eula

2. Go to the Oracle Java Runtime Environment Download Page, accept the license agreement, and download the
Linux x64-RPM Installer or Linuxx86-RPM Installer (depending on your platform).

3. Go to the directory where you downloaded the JRE package, and change the permissions so the file is
executable. For example:

$ cd /tmp
$ chmod a+x jre-6u25-linux-x64-rpm.bin

4. Extract and run the rpm file. For example:

$ sudo ./jre-6u25-linux-x64-rpm.bin

The rpm installs the JRE into /usr/java/.

5. Configure your system so that it is using the Oracle Sun JRE instead of the OpenJDK JRE. Use the
alternatives command to add a symbolic link to the Oracle Sun JRE installation. For example:

$ sudo alternatives --install /usr/bin/java java /usr/java/jre1.6.0_25/bin/java 20000

6. Make sure your system is now using the correct JRE. For example:

$ java -version
 java version "1.6.0_25"
 Java(TM) SE Runtime Environment (build 1.6.0_25-b06)
 Java HotSpot(TM) 64-Bit Server VM (build 20.0-b11, mixed mode)

7. If the OpenJDK JRE is still being used, use the alternatives command to switch it. For example:

$ sudo alternatives --config java
There are 2 programs which provide 'java'.

Selection Command

 1 /usr/lib/jvm/jre-1.6.0-openjdk.x86_64/bin/java
*+ 2 /usr/java/jre1.6.0_25/bin/java

Enter to keep the current selection[+], or type selection number: 2

Installing Cassandra Debian Packages
DataStax provides a debian package repository for Apache Cassandra. These instructions assume that you have the
aptitude package management application installed, and that you have root access on the machine where you are
installing.

Note
By downloading community software from DataStax you agree to the terms of the DataStax Community EULA (end
user license agreement) posted on the DataStax web site.

1. Edit the aptitude repository source list file (/etc/apt/sources.list).

$ sudo vi /etc/apt/sources.list

Installing Cassandra Debian Packages

29

http://www.oracle.com/technetwork/java/javase/downloads/jre-6u25-download-346243.html
http://www.datastax.com/products/community/eula

2. In this file, add the DataStax Community repository.

deb http://debian.datastax.com/community stable main

(Debian Systems Only) Find the line that describes your source repository for Debian and add contrib
non-free to the end of the line. This will allow installation of the Oracle Sun JVM instead of the OpenJDK JVM.
For example:

deb http://some.debian.mirror/debian/ $distro main contrib non-free

Save and close the file when you are done adding/editing your sources.

3. Add the DataStax repository key to your aptitude trusted keys.

$ wget -O - http://debian.datastax.com/debian/repo_key | sudo apt-key add -

4. Install the package.

$ sudo apt-get update
$ sudo apt-get install dsc

This installs the Cassandra, DataStax Community demos, and OpsCenter packages.

6. Check which version of the Java Runtime Environment (JRE) your system is using. If your system is using the
OpenJDK Runtime Environment, you will need to change it to use the Oracle Sun JRE.

$ java -version

7. By default, the Debian packages start the Cassandra service automatically. To stop the service and clear the initial
gossip history that gets populated by this initial start:

$ sudo service cassandra stop
$ sudo bash -c 'rm /var/lib/cassandra/data/system/*'

Installing Sun JRE on Ubuntu Systems
DataStax recommends installing the most recently released version of the Oracle Sun Java Runtime Environment
(JRE), also referred to as the Java Virtual Machine (JVM). Versions earlier than 1.6.0_19 should not be used.

1. Edit the aptitude repository source list file (/etc/apt/sources.list).

$ sudo vi /etc/apt/sources.list

2. Add the following repository for your operating system. For example, where <OSType> is lenny, lucid,
maverick or squeeze:

deb http://archive.canonical.com/ <OSType> partner

3. Install the Sun JRE packages:

$ sudo apt-get update
$ sudo apt-get install sun-java6-jre

4. A license screen will appear and prompt you to accept the license terms. Once you click OK and Yes to accept
the license terms, the JRE will finish installing.

5. Configure your system so that it is using the Oracle Sun JRE instead of the OpenJDK JRE.

$ sudo update-alternatives --config java

Installing Sun JRE on Ubuntu Systems

30

6. Make sure your system is now using the correct JRE. For example:

$ sudo java -version
java version "1.6.0_26"
Java(TM) SE Runtime Environment (build 1.6.0_26-b03)
Java HotSpot(TM) 64-Bit Server VM (build 20.1-b02, mixed mode)

About Packaged Installs
The packaged releases install into the following directories. The packaged releases create a cassandra user. When
starting Cassandra as a service, the service runs as this user.

• /var/lib/cassandra (data directories)

• /var/log/cassandra (log directory)

• /var/run/cassandra (runtime files)

• /usr/share/cassandra (environment settings)

• /usr/share/dse-demos (DataStax demo application)

• /usr/share/cassandra/lib (jar files)

• /usr/bin (binary files)

• /usr/sbin

• /etc/cassandra (configuration files)

• /etc/init.d (service startup script)

• /etc/security/limits.d (cassandra user limits)

• /etc/default

Next Steps
For next steps see Configuring and Starting a Cassandra Cluster.

Installing the Cassandra Tarball Distribution
Binary tarball distributions of Cassandra are available from the DataStax Downloads Site. DataStax also provides a GUI
Windows installation package for Microsoft Windows and a tar package for Mac. For more information on Windows and
Mac installations, see the DataStax Community Install Instructions.

Instructions for installing Cassandra on Linux
To run Cassandra, you will need to install a Java Virtual Machine (JVM). DataStax recommends installing the most
recently released version of the Sun JVM. Versions earlier than 1.6.0_19 are specifically not recommended. See
Installing Sun JRE on Ubuntu Systems and Installing Sun JRE on RedHat Systems for instructions.

Note
By downloading community software from DataStax you agree to the terms of the DataStax Community EULA (End
User License Agreement) posted on the DataStax web site.

1. Download the distribution to a location on your machine and unpack it. For example, to download and unpack
Cassandra DataStax Community, you would enter the following command:

$ wget http://downloads.datastax.com/community/dsc.tar.gz

$ tar -xvzf dsc.tar.gz

About Packaged Installs

31

http://downloads.datastax.com
http://www.datastax.com/products/community/eula

2. For convenience, set the following environment variables in your user environment (such as .bashrc):

export CASSANDRA_HOME=<install_location>/<dse_package_name>

export PATH=$PATH:$CASSANDRA_HOME/bin

3. Create the data and logging directories needed by Cassandra. By default, Cassandra uses
/var/lib/cassandra and /var/log/cassandra. To create these directories, run the following commands
where $USER is the user that will run Cassandra:

mkdir /var/lib/cassandra
mkdir /var/log/cassandra
chown -R $USER:$GROUP /var/lib/cassandra
chown -R $USER:$GROUP /var/log/cassandra

Note
For information about installing the Portfolio Demo Sample Application, see Installing a Single-Node Instance of
Cassandra.

About Cassandra Binary Installations
The following directories are installed in $CASSANDRA_HOME

• bin (utilities and start scripts)

• conf (configuration files and environment settings)

• interface (Thrift and Avro client APIs)

• javadoc (Cassandra Java API documentation)

• lib (jar files and license files)

Installing JNA
Installing JNA (Java Native Access) on Linux platforms can improve Cassandra memory usage. With JNA installed and
configured as described in this section, Linux does not swap out the JVM, and thus avoids related performance issues.

1. Download jna.jar from the JNA project site.

2. Add jna.jar to $CASSANDRA_HOME/lib/ or otherwise place it on the CLASSPATH.

3. Edit the file /etc/security/limits.conf, adding the following entries for the user or group that runs
Cassandra:

$USER soft memlock unlimited
$USER hard memlock unlimited

Next Steps
For next steps see Configuring and Starting a Cassandra Cluster.

Initializing a Cassandra Cluster on Amazon EC2 Using the DataStax AMI
This is a step-by-step guide to using the Amazon Web Services EC2 Management Console to set up a simple
Cassandra cluster using the DataStax Community Edition AMI (Amazon Machine Image). Installing via the AMI allows
you to quickly deploy a Cassandra cluster within a single availability zone. When you launch the AMI, you can specify
the total number of nodes in your cluster.

About Cassandra Binary Installations

32

http://java.net/projects/jna/sources/svn/show/trunk/jnalib/dist/
http://aws.amazon.com/ec2

The DataStax Cassandra AMI does the following:

• Installs Cassandra on an Ubuntu 10.10 image

• Uses RAID0 ephemeral disks for data storage and commit log

• Uses the private interface for intra-cluster communication

• Configures a Cassandra cluster using the RandomPartitioner

• Configures the Cassandra replication strategy using the EC2Snitch

• Configures the seed node cluster-wide

• Starts Cassandra on all the nodes

• Installs DataStax OpsCenter on the first node in the cluster (by default)

Creating an EC2 Security Group for DataStax Community Edition

1. In your Amazon EC2 Console Dashboard, select Security Groups in the Network & Security section.

2. Click Create Security Group. Fill out the name and description and click Yes, Create.

3. Click Inbound and add rules for the following ports.

Port Rule Type Description
22 SSH Default SSH port

7000 Custom TCP Rule Cassandra intra-node port (source is the current security group)

9160 Custom TCP Rule Cassandra client port

7199 Custom TCP Rule Cassandra JMX monitoring port

1024+ Custom TCP Rule JMX reconnection/loopback ports (source is the current security
group)

8888 Custom TCP Rule OpsCenter website port

61620 Custom TCP Rule OpsCenter intra-node monitoring port (source is the current security
group)

61621 Custom TCP Rule OpsCenter agent port (source is the current security group)

8983 Custom TCP Rule DataStax demo application website port

Creating an EC2 Security Group for DataStax Community Edition

33

4. After you are done adding the above port rules, click Apply Rule Changes. Your completed port rules should look
something like this:

Note
This security configuration shown in this example opens up all externally accessible ports to incoming traffic from any
IP address (0.0.0.0/0). If you desire a more secure configuration, see the Amazon EC2 help on Security Groups for
more information on how to configure more limited access to your cluster.

Launching the DataStax Community AMI
After you have created your security group, you are ready to launch an instance of Cassandra using the DataStax
Community Edition AMI.

1. From your Amazon EC2 Console Dashboard, click Launch Instance. Select Launch Classic Wizard and
Continue.

2. On the Choose an AMI page, select the Community AMIs tab. Find DataStax AMI, version 2.1 and click Select
to launch it.

3. On the Instance Details page, enter the total number of nodes you want in your cluster in the Number of
Instances field and select the Instance Type.

4. Click Continue.

Launching the DataStax Community AMI

34

5. Under Advanced Instance Options add the following options to the User Data section depending on the type of
cluster you want. Option parameters cannot have spaces.

For new Cassandra clusters the available options are:

Option Description
-c | --clustername
<name>

Required. The name of the cluster.

-n | --totalnodes
<num_nodes>

Required. The total number of nodes in the cluster.

-v | --version
[enterprise | community]

Required. The version of the cluster. Use community to install the latest
version of DataStax Community Edition.

-o | --opscenter [no] Optional. By default, DataStax OpsCenter will be installed on the first
instance unless you specify this option with no.

-e | --email
<smtp>:<port>:<email>:<password>

Optional. Sends logs from AMI install to this email address. For example:
-e smtp.gmail.com:587:ec2@datastax.com:pa$$word

6. Click Continue.

7. On the Tags page, give a name to your instance. This can be any name you like (For example:
cassandra-node). Click Continue.

8. On the Create Key Pair page create a new key pair or select an existing key pair and click Continue. You will
need this key (.pem file) to log in to your Cassandra nodes, so save it to a location on your local machine.

9. On the Configure Firewall page, select the security group you created earlier and click Continue.

10. On the Review page, review your cluster configuration and then click Launch.

11. Go to the My Instances page to see the status of your instance. Once a node has a status of running, you are
able to connect to it.

Connecting to Your Cassandra EC2 Instance
You can connect to your new Cassandra EC2 instance using any SSH client (PuTTY, Terminal, etc.). To connect, you
will need a private key (the .pem file you created earlier) and the public DNS name of a node. Connect as user ubuntu
rather than as root.

If this is the first time you are connecting, copy your private key file (<keyname>.pem) you downloaded earlier to your
home directory, and change the permissions so it is not publicly viewable. For example:

chmod 400 datastax-key.pem

Connecting to Your Cassandra EC2 Instance

35

1. From the My Instances page in your AWS EC2 Dashboard, select the node you want to connect to. Since all
nodes are peers in Cassandra, you can connect using any node in the cluster. However, the first node is typically
the node running the OpsCenter service (and is also the Cassandra seed node).

2. To get the public DNS name of a node, select Instance Actions > Connect

Connecting to Your Cassandra EC2 Instance

36

3. This will open a Connect Help - Secure Shell (SSH) page for the selected node. This page will have all of the
information you need to connect via SSH. If you copy and paste the command line, change the connection user
from root to ubuntu.

4. The AMI image configures your cluster and starts the Cassandra and OpsCenter services. After you have logged
in to a node, run the nodetool ring command to make sure your cluster is up and running. For example:

5. For next steps, see Running the Portfolio Demo Sample Application.

Connecting to Your Cassandra EC2 Instance

37

Note
If you are installing OpsCenter with your Cassandra cluster, allow about 60 to 90 seconds after the cluster has finished
loading for OpsCenter to start. You can launch OpsCenter using the URL:
http://<public-dns-of-first-instance>:8888. After OpsCenter loads, you must install the OpsCenter
agents if you want to see cluster performance data (click Install Agents). When prompted for credentials for the agent
nodes, use the username ubuntu and copy/paste the entire contents from your private key file (the .pem file you
downloaded earlier).

Configuring and Starting a Cassandra Cluster
The process for initializing a Cassandra cluster (be it a single node, multiple node, or multiple data center cluster) is to
first correctly configure the Node and Cluster Initialization Properties in each node's cassandra.yaml configuration file,
and then start each node individually starting with the seed node(s).

For more guidance on choosing the right configuration properties for your needs, see Choosing Node Configuration
Options.

Initializing a Multi-Node or Multi-Data Center Cluster
To correctly configure a multi-node or multi-data center cluster you must determine the following information:

• A name for your cluster.

• How many total nodes your cluster will have, and how many nodes per data center (or replication group).

• The IP addresses of each node

• The token for each node (see Calculating Tokens). If you are deploying a multi-data center cluster, make sure to
assign tokens so that data is evenly distributed within each data center or replication grouping (see Calculating
Tokens for a Multi-Data Center Cluster).

• Which nodes will serve as the seed nodes. If you are deploying a multi data center cluster, the seed list should
include a node from each data center or replication group.

• The snitch you plan to use.
This information will be used to configure the Node and Cluster Initialization Properties in the cassandra.yaml
configuration file on each node in the cluster. Each node should be correctly configured before starting up the cluster,
one node at a time (starting with the seed nodes).

For example, suppose you are configuring a 6 node cluster spanning 2 racks in a single data center. The nodes have
the following IPs, and one node per rack will serve as a seed:

• node0 110.82.155.0 (seed1)

• node1 110.82.155.1

• node2 110.82.155.2

• node3 110.82.156.3 (seed2)

• node4 110.82.156.4

• node5 110.82.156.5
The cassandra.yaml files for each node would then have the following modified property settings.

node0

cluster_name: 'MyDemoCluster'
initial_token: 0
seed_provider:
 - seeds: "110.82.155.0,110.82.155.3"

Configuring and Starting a Cassandra Cluster

38

listen_address: 110.82.155.0
rpc_address: 0.0.0.0
endpoint_snitch: RackInferringSnitch

node1

cluster_name: 'MyDemoCluster'
initial_token: 28356863910078205288614550619314017621
seed_provider:
 - seeds: "110.82.155.0,110.82.155.3"
listen_address: 110.82.155.1
rpc_address: 0.0.0.0
endpoint_snitch: RackInferringSnitch

node2

cluster_name: 'MyDemoCluster'
initial_token: 56713727820156410577229101238628035242
seed_provider:
 - seeds: "110.82.155.0,110.82.155.3"
listen_address: 110.82.155.2
rpc_address: 0.0.0.0
endpoint_snitch: RackInferringSnitch

node3

cluster_name: 'MyDemoCluster'
initial_token: 85070591730234615865843651857942052864
seed_provider:
 - seeds: "110.82.155.0,110.82.155.3"
listen_address: 110.82.155.3
rpc_address: 0.0.0.0
endpoint_snitch: RackInferringSnitch

node4

cluster_name: 'MyDemoCluster'
initial_token: 113427455640312821154458202477256070485
seed_provider:
 - seeds: "110.82.155.0,110.82.155.3"
listen_address: 110.82.155.4
rpc_address: 0.0.0.0
endpoint_snitch: RackInferringSnitch

node5

cluster_name: 'MyDemoCluster'
initial_token: 141784319550391026443072753096570088106
seed_provider:
 - seeds: "110.82.155.0,110.82.155.3"
listen_address: 110.82.155.5
rpc_address: 0.0.0.0
endpoint_snitch: RackInferringSnitch

Calculating Tokens
Tokens are used to assign a range of data to a particular node. Assuming you are using the RandomPartitioner
(the default partitioner), the approaches described in this section will ensure even data distribution.

Calculating Tokens

39

Each node in the cluster should be assigned a token before it is started for the first time. The token is set with the
initial_token property in the cassandra.yaml configuration file.

Calculating Tokens for Multiple Racks
If you have multiple racks in single data center or a multiple data center cluster, you can use the same formula for
calculating the tokens. However you should assign the tokens to nodes in alternating racks. For example: rack1, rack2,
rack3, rack1, rack2, rack3, and so on. Be sure to have the same number of nodes in each rack.

Calculating Tokens for a Single Data Center

1. Create a new file for your token generator program:

vi tokengentool

2. Paste the following Python program into this file:

#! /usr/bin/python
import sys
if (len(sys.argv) > 1):
 num=int(sys.argv[1])
else:
 num=int(raw_input("How many nodes are in your cluster? "))
for i in range(0, num):
 print 'token %d: %d' % (i, (i*(2**127)/num))

3. Save and close the file and make it executable:

chmod +x tokengentool

Calculating Tokens for Multiple Racks

40

4. Run the script:

./tokengentool

5. When prompted, enter the total number of nodes in your cluster:

How many nodes are in your cluster? 6
token 0: 0
token 1: 28356863910078205288614550619314017621
token 2: 56713727820156410577229101238628035242
token 3: 85070591730234615865843651857942052864
token 4: 113427455640312821154458202477256070485
token 5: 141784319550391026443072753096570088106

6. On each node, edit the cassandra.yaml file and enter its corresponding token value in the initial_token
property.

Calculating Tokens for a Multi-Data Center Cluster
In multi-data center deployments, replica placement is calculated per data center using the
NetworkTopologyStrategy replica placement strategy. In each data center (or replication group) the first replica for
a particular row is determined by the token value assigned to a node. Additional replicas in the same data center are
placed by walking the ring clockwise until it reaches the first node in another rack.

If you do not calculate partitioner tokens so that the data ranges are evenly distributed for each data center, you could
end up with uneven data distribution within a data center. The goal is to ensure that the nodes for each data center are
evenly dispersed around the ring, or to calculate tokens for each replication group individually (without conflicting token
assignments).

One way to avoid uneven distribution is to calculate tokens for all nodes in the cluster, and then alternate the token
assignments so that the nodes for each data center are evenly dispersed around the ring.

Calculating Tokens for a Multi-Data Center Cluster

41

Another way to assign tokens in a multi data center cluster is to generate tokens for the nodes in one data center, and
then offset those token numbers by 1 for all nodes in the next data center, by 2 for the nodes in the next data center,
and so on. This approach is good if you are adding a data center to an established cluster, or if your data centers do not
have the same number of nodes.

Starting and Stopping a Cassandra Node
After you have installed and configured Cassandra on all nodes, you are ready to start your cluster. On initial start-up,
each node must be started one at a time, starting with your seed nodes.

Packaged installations include startup scripts for running Cassandra as a service. Binary packages do not.

• Starting/Stopping Cassandra as a Stand-Alone Process

• Starting/Stopping Cassandra as a Service

Starting/Stopping Cassandra as a Stand-Alone Process
You can start the Cassandra Java server process as follows:

$ cd $CASSANDRA_HOME
$ sh bin/cassandra -f

To stop the Cassandra process, find the Cassandra Java process ID (PID), and then kill -9 the process using its
PID number. For example:

$ ps ax | grep java
$ kill -9 1539

Starting/Stopping Cassandra as a Service
Packaged installations provide startup scripts in /etc/init.d for starting Cassandra as a service. The service runs
as the cassandra user. You must have root or sudo permissions to start or stop services.

To start the Cassandra service (as root):

Starting and Stopping a Cassandra Node

42

service cassandra start

To stop the Cassandra service (as root):

service cassandra stop

Note
On Enterprise Linux systems, the Cassandra service runs as a java process. On Debian systems, the Cassandra
service runs as a jsvc process.

Upgrading Cassandra
This section includes information on upgrading between releases:

Major Releases Minor Releases
Upgrading Cassandra: 0.8.x to 1.0.x Upgrading Between Minor Releases of Cassandra 1.0.x

Best Practices for Upgrading Cassandra
The following best practices are recommended when upgrading Cassandra:

• Always take a snapshot before any upgrade. This allows you to rollback to the previous version if necessary.
Cassandra is able to read data files created by the previous version, but the inverse is not always true.

Note
Snapshotting is fast, especially if you have JNA installed, and takes effectively zero disk space until you start
compacting the live data files again.

• Be sure to check https://github.com/apache/cassandra/blob/trunk/NEWS.txt for any new information on upgrading.

• For a list of fixes and new features, see https://github.com/apache/cassandra/blob/trunk/CHANGES.txt

Upgrading Cassandra: 0.8.x to 1.0.x
Upgrading from version 0.8 or later can be done with a rolling restart, one node at a time. You do not need to bring down
the whole cluster at once.

To upgrade a binary installation from 0.8.x to 1.0.x:

1. On each node, download and unpack the 1.0 binary tarball package from the downloads section of the Cassandra
website.

2. Account for New and Changed Parameters between 0.8 and 1.0 in cassandra.yaml. You can copy your
existing 0.8.x configuration file into the upgraded Cassandra instance and manually update it with new content.

3. Make sure any client drivers -- such as Hector or Pycassa clients -- are 1.0-compatible.

4. Run nodetool drain on the 0.8.x node to flush the commit log.

5. Stop the old Cassandra process, then start the new binary process.

6. Monitoring the log files for any issues.

7. After upgrading and restarting all Cassandra processes, restart client applications.

8. After upgrading, run nodetool upgradesstables against each node before running repair, moving nodes, or adding
new ones. (If using Cassandra 1.0.3 and earlier, use nodetool scrub instead.)

Upgrading Cassandra

43

https://github.com/apache/cassandra/blob/trunk/NEWS.txt
https://github.com/apache/cassandra/blob/trunk/CHANGES.txt
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/

To upgrade a CentOS/RHEL packaged release installation from 0.8.x to 1.0.x:

1. On each of your Cassandra nodes, run sudo yum install apache-cassandra1.

2. Account for New and Changed Parameters between 0.8 and 1.0 in cassandra.yaml. The installer creates the
file cassandra.yaml.rpmnew in /etc/cassandra/default.conf/. You can diff this file with your existing
configuration and add new content.

3. Make sure any client drivers -- such as Hector or Pycassa clients -- are 1.0-compatible.

4. Run nodetool drain on the 0.8.x node to flush the commit log.

5. Restart the Cassandra process.

6. Monitor the log files for any issues.

7. After upgrading and restarting all Cassandra processes, restart client applications.

8. After upgrading, run nodetool upgradesstables against each node before running repair, moving nodes, or adding
new ones. (If using Cassandra 1.0.3 and earlier, use nodetool scrub instead.)

To upgrade a Debian/Ubuntu packaged release installation from 0.8.x to 1.0.x:

1. On each of your Cassandra nodes, run sudo apt-get install cassandra1.

2. Account for New and Changed Parameters between 0.8 and 1.0 in cassandra.yaml. The installer creates the
file cassandra.yaml.rpmnew in /etc/cassandra/default.conf/. You can diff this file with your existing
configuration and add new content.

3. Make sure any client drivers, such as Hector or Pycassa clients, are 1.0-compatible.

4. Run nodetool drain on the 0.8.x node to flush the commit log.

5. Restart the Cassandra process.

6. Monitor the log files for any issues.

7. After upgrading and restarting all Cassandra processes, restart client applications.

8. After upgrading, run nodetool upgradesstables against each node before running repair, moving nodes, or adding
new ones. (If using Cassandra 1.0.3 and earlier, use nodetool scrub instead.)

New and Changed Parameters between 0.8 and 1.0
This table lists cassandra.yaml parameters that have changed between 0.8 and 1.0. See the cassandra.yaml
reference for details on these parameters.

Option Default Value
1.0 Release
broadcast_address Same as listen_address - set to the public IP in multi-region EC2 clusters

compaction_thread_priority Removed (use compaction_throughput_mb_per_sec instead)

commitlog_rotation_threshold_in_mbRemoved

commitlog_total_space_in_mb4096 (replaces column family storage property memtable_flush_after_mins)

multithreaded_compaction false

memtable_total_space_in_mb1/3 of heap (replaces column family storage properties memtable_operations_in_millions
and memtable_throughput_in_mb)

0.8 Release
seed_provider SimpleSeedProvider

seeds Note: Now a comma-delimited list in double quotes.

New and Changed Parameters between 0.8 and 1.0

44

memtable_total_space_in_mb1/3 of heap

compaction_throughput_mb_per_sec16

concurrent_compactors One per CPU

internode_encryption none

keystore conf/.keystore

keystore_password cassandra

truststore conf/.truststore

truststore_password cassandra

Upgrading Between Minor Releases of Cassandra 1.0.x
Upgrading minor releases can be done with a rolling restart, one node at a time. You do not need to bring down the
whole cluster at once.

To upgrade a binary tarball package installation:

1. On each node, download and unpack the binary tarball package from the downloads section of the Cassandra
website.

2. Account for New and Changed Parameters between 0.8 and 1.0 in cassandra.yaml. You can copy your
existing configuration file into the upgraded Cassandra instance and manually update it with new content.

3. Make sure any client drivers, such as Hector or Pycassa clients, are compatible with the new version.

4. Flush the commit log on the upgraded node by running nodetool drain.

5. Stop the old Cassandra process, then start the new binary process.

6. Monitor the log files for any issues.
To upgrade a Debian or RPM package installation:

1. On each node, download and install the package from the downloads section of the Cassandra website.

2. Account for New and Changed Parameters between 0.8 and 1.0 in cassandra.yaml. You can copy your
existing configuration file into the upgraded Cassandra instance and manually update it with new content.

3. Make sure any client drivers, such as Hector or Pycassa clients, are compatible with the new version.

4. Flush the commit log on the upgraded node by running nodetool drain.

5. Restart the Cassandra process.

6. Monitor the log files for any issues.

Understanding the Cassandra Data Model
The Cassandra data model is a dynamic schema, column-oriented data model. This means that, unlike a relational
database, you do not need to model all of the columns required by your application up front, as each row is not required
to have the same set of columns. Columns and their metadata can be added by your application as they are needed
without incurring downtime to your application.

The Cassandra Data Model
For developers new to Cassandra and coming from a relational database background, the data model can be a bit
confusing. The following section provides a comparison of the two.

Comparing the Cassandra Data Model to a Relational Database

Upgrading Between Minor Releases of Cassandra 1.0.x

45

http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/download/

The Cassandra data model is designed for distributed data on a very large scale. Although it is natural to want to
compare the Cassandra data model to a relational database, they are really quite different. In a relational database, data
is stored in tables and the tables comprising an application are typically related to each other. Data is usually normalized
to reduce redundant entries, and tables are joined on common keys to satisfy a given query.

For example, consider a simple application that allows users to create blog entries. In this application, blog entries are
categorized by subject area (sports, fashion, etc.). Users can also choose to subscribe to the blogs of other users. In
this example, the user id is the primary key in the users table and the foreign key in the blog and subscriber tables.
Likewise, the category id is the primary key of the category table and the foreign key in the blog_entry table. Using this
relational model, SQL queries can perform joins on the various tables to answer questions such as "what users
subscribe to my blog" or "show me all of the blog entries about fashion" or "show me the most recent entries for the
blogs I subscribe to".

In Cassandra, the keyspace is the container for your application data, similar to a database or schema in a relational
database. Inside the keyspace are one or more column family objects, which are analogous to tables. Column families
contain columns, and a set of related columns is identified by an application-supplied row key. Each row in a column
family is not required to have the same set of columns.

Cassandra does not enforce relationships between column families the way that relational databases do between
tables: there are no formal foreign keys in Cassandra, and joining column families at query time is not supported. Each
column family has a self-contained set of columns that are intended to be accessed together to satisfy specific queries
from your application.

For example, using the blog application example, you might have a column family for user data and blog entries similar
to the relational model. Other column families (or secondary indexes) could then be added to support the queries your
application needs to perform. For example, to answer the queries "what users subscribe to my blog" or "show me all of
the blog entries about fashion" or "show me the most recent entries for the blogs I subscribe to", you would need to
design additional column families (or add secondary indexes) to support those queries. Keep in mind that some
denormalization of data is usually required.

Upgrading Between Minor Releases of Cassandra 1.0.x

46

About Keyspaces
In Cassandra, the keyspace is the container for your application data, similar to a schema in a relational database.
Keyspaces are used to group column families together. Typically, a cluster has one keyspace per application.

Replication is controlled on a per-keyspace basis, so data that has different replication requirements should reside in
different keyspaces. Keyspaces are not designed to be used as a significant map layer within the data model, only as a
way to control data replication for a set of column families.

Defining Keyspaces

About Keyspaces

47

Data Definition Language (DDL) commands for defining and altering keyspaces are provided in the various client
interfaces, such as Cassandra CLI and CQL. For example, to define a keyspace in CQL:

CREATE KEYSPACE keyspace_name WITH
strategy_class = 'SimpleStrategy'
AND strategy_options:replication_factor=2;

Or in Cassandra CLI:

CREATE KEYSPACE keyspace_name WITH
placement_strategy = 'SimpleStrategy'
AND strategy_options = [{replication_factor:2}];

See Getting Started Using the Cassandra CLI and Getting Started with CQL for more information on DDL commands for
Cassandra.

About Column Families
When comparing Cassandra to a relational database, the column family is similar to a table in that it is a container for
columns and rows. However, a column family requires a major shift in thinking for those coming from the relational
world.

In a relational database, you define tables, which have defined columns. The table defines the column names and their
data types, and the client application then supplies rows conforming to that schema: each row contains the same fixed
set of columns.

In Cassandra, you define column families. Column families can (and should) define metadata about the columns, but the
actual columns that make up a row are determined by the client application. Each row can have a different set of
columns.

Although column families are very flexible, in practice a column family is not entirely schema-less. Each column family
should be designed to contain a single type of data. There are two typical column family design patterns in Cassandra;
the static and dynamic column families.

A static column family uses a relatively static set of column names and is more similar to a relational database table. For
example, a column family storing user data might have columns for the user name, address, email, phone number and
so on. Although the rows will generally have the same set of columns, they are not required to have all of the columns
defined. Static column families typically have column metadata pre-defined for each column.

A dynamic column family takes advantage of Cassandra's ability to use arbitrary application-supplied column names to
store data. A dynamic column family allows you to pre-compute result sets and store them in a single row for efficient
data retrieval. Each row is a snapshot of data meant to satisfy a given query, sort of like a materialized view. For
example, a column family that tracks the users that subscribe to a particular user's blog.

About Column Families

48

Instead of defining metadata for individual columns, a dynamic column family defines the type information for column
names and values (comparators and validators), but the actual column names and values are set by the application
when a column is inserted.

For all column families, each row is uniquely identified by its row key, similar to the primary key in a relational table. A
column family is always partitioned on its row key, and the row key is always implicitly indexed.

About Columns
The column is the smallest increment of data in Cassandra. It is a tuple containing a name, a value and a timestamp.

A column must have a name, and the name can be a static label (such as "name" or "email") or it can be dynamically
set when the column is created by your application.

Columns can be indexed on their name (see secondary indexes). However, one limitation of column indexes is that they
do not support queries that require access to ordered data, such as time series data. In this case a secondary index on
a timestamp column would not be sufficient because you cannot control column sort order with a secondary index. For
cases where sort order is important, manually maintaining a column family as an 'index' is another way to lookup column
data in sorted order.

It is not required for a column to have a value. Sometimes all the information your application needs to satisfy a given
query can be stored in the column name itself. For example, if you are using a column family as a materialized view to
lookup rows from other column families, all you need to store is the row key that you are looking up; the value can be
empty.

Cassandra uses the column timestamp to determine the most recent update to a column. The timestamp is provided by
the client application. The latest timestamp always wins when requesting data, so if multiple client sessions update the
same columns in a row concurrently, the most recent update is the one that will eventually persist. See About
Transactions and Concurrency Control for more information about how Cassandra handles conflict resolution.

About Special Columns (Counter, Expiring, Super)
Cassandra has three special types of columns, described below:

About Expiring Columns
A column can also have an optional expiration date, known in Cassandra as the time to live (TTL). Whenever a column
is inserted, the client request can specify an optional TTL value for the column. TTL columns are marked as deleted
(with a tombstone) after the requested amount of time has expired. Once they are marked as deleted, they are
automatically removed during the normal compaction and repair processes.

About Columns

49

About Counter Columns
A counter is a special kind of column used to store a number that incrementally counts the occurrences of a particular
event or process. For example, you might use a counter column to count the number of times a page is viewed.

Counter column families must use CounterColumnType as the validator (the column value type). This means that
currently, counters may only be stored in dedicated column families; they will be allowed to mix with normal columns in a
future release.

Counter columns are different from regular columns in that once a counter is defined, the client application then updates
the column value by incrementing (or decrementing) it. A client update to a counter column passes the name of the
counter and the increment (or decrement) value; no timestamp is required.

Internally, the structure of a counter column is a bit more complex. Cassandra tracks the distributed state of the counter
as well as a server-generated timestamp upon deletion of a counter column. For this reason, it is important that all
nodes in your cluster have their clocks synchronized using network time protocol (NTP).

A counter can be read or written at any of the available consistency levels. However, it's important to understand that
unlike normal columns, a write to a counter requires a read in the background to ensure that distributed counter values
remain consistent across replicas. If you write at a consistency level of ONE, the implicit read will not impact write
latency, hence, ONE is the most common consistency level to use with counters.

About Super Columns
A Cassandra column family can contain either regular columns or super columns, which adds another level of nesting to
the regular column family structure. Super columns are comprised of a (super) column name and an ordered map of
sub-columns. A super column can specify a comparator on both the super column name as well as on the sub-column
names.

A super column is a way to group multiple columns based on a common lookup value. The primary use case for super
columns is to denormalize multiple rows from other column families into a single row, allowing for materialized view data
retrieval. For example, suppose you wanted to create a materialized view of blog entries for the bloggers that a user
follows.

One limitation of super columns is that all sub-columns of a super column must be deserialized in order to read a single
sub-column value, and you cannot create secondary indexes on the sub-columns of a super column. Therefore, the use
of super columns is best suited for use cases where the number of sub-columns is a relatively small number.

About Data Types (Comparators and Validators)
In a relational database, you must specify a data type for each column when you define a table. The data type
constrains the values that can be inserted into that column. For example, if you have a column defined as an integer

About Counter Columns

50

datatype, you would not be allowed to insert character data into that column. Column names in a relational database are
typically fixed labels (strings) that are assigned when you define the table schema.

In Cassandra, the data type for a column (or row key) value is called a validator. The data type for a column name is
called a comparator. You can define data types when you create your column family schemas (which is recommended),
but Cassandra does not require it. Internally, Cassandra stores column names and values as hex byte arrays
(BytesType). This is the default client encoding used if data types are not defined in the column family schema (or if
not specified by the client request).

Cassandra comes with the following built-in data types, which can be used as both validators (row key and column value
data types) or comparators (column name data types). One exception is CounterColumnType, which is only allowed
as a column value (not allowed for row keys or column names).

Internal Type CQL Name Description
BytesType blob Arbitrary hexadecimal bytes (no validation)

AsciiType ascii US-ASCII character string

UTF8Type text, varchar UTF-8 encoded string

IntegerType varint Arbitrary-precision integer

LongType int, bigint 8-byte long

UUIDType uuid Type 1 or type 4 UUID

DateType timestamp Date plus time, encoded as 8 bytes since epoch

BooleanType boolean true or false

FloatType float 4-byte floating point

DoubleType double 8-byte floating point

DecimalType decimal Variable-precision decimal

CounterColumnType counter Distributed counter value (8-byte long)

About Validators
For all column families, it is best practice to define a default row key validator using the key_validation_class property.

For static column families, you should define each column and its associated type when you define the column family
using the column_metadata property.

For dynamic column families (where column names are not known ahead of time), you should specify a
default_validation_class instead of defining the per-column data types.

Key and column validators may be added or changed in a column family definition at any time. If you specify an invalid
validator on your column family, client requests that respect that metadata will be confused, and data inserts or updates
that do not conform to the specified validator will be rejected.

About Comparators
Within a row, columns are always stored in sorted order by their column name. The comparator specifies the data type
for the column name, as well as the sort order in which columns are stored within a row. Unlike validators, the
comparator may not be changed after the column family is defined, so this is an important consideration when defining a
column family in Cassandra.

Typically, static column family names will be strings, and the sort order of columns is not important in that case. For
dynamic column families, however, sort order is important. For example, in a column family that stores time series data
(the column names are timestamps), having the data in sorted order is required for slicing result sets out of a row of
columns.

About Validators

51

About Column Family Compression
Data compression can be configured on a per-column family basis. Compression maximizes the storage capacity of
your Cassandra nodes by reducing the volume of data on disk. In addition to the space-saving benefits, compression
also reduces disk I/O, particularly for read-dominated workloads.

Besides reducing data size, compression typically improves both read and write performance. Cassandra is able to
quickly find the location of rows in the SSTable index, and only decompresses the relevant row chunks. This means
compression improves read performance not just by allowing a larger data set to fit in memory, but it also benefits
workloads where the hot data set does not fit into memory.

Unlike in traditional databases, write performance is not negatively impacted by compression in Cassandra. Writes on
compressed tables can in fact show up to a 10 percent performance improvement. In traditional relational databases,
writes require overwrites to existing data files on disk. This means that the database has to locate the relevant pages on
disk, decompress them, overwrite the relevant data, and then compress them again (an expensive operation in both
CPU cycles and disk I/O).

Because Cassandra SSTable data files are immutable (they are not written to again after they have been flushed to
disk), there is no recompression cycle necessary in order to process writes. SSTables are only compressed once, when
they are written to disk.

Enabling compression can yield the following benefits, depending on the data characteristics of the column family:

• 2x-4x reduction in data size

• 25-35% performance improvement on reads

• 5-10% performance improvement on writes

When to Use Compression
Compression is best suited for column families where there are many rows, with each row having the same columns, or
at least many columns in common. For example, a column family containing user data such as username, email, etc.,
would be a good candidate for compression. The more similar the data across rows, the greater the compression ratio
will be, and the larger the gain in read performance.

Compression is not as good a fit for column families where each row has a different set of columns, or where there are
just a few very wide rows. Dynamic column families such as this will not yield good compression ratios.

Configuring Compression on a Column Family
When you create or update a column family, you can choose to make it a compressed column family by setting the
compression_options attributes.

You can enable compression when you create a new column family, or update an existing column family to add
compression later on. When you add compression to an existing column family, existing SSTables on disk are not
compressed immediately. Any new SSTables that are created will be compressed, and any existing SSTables will be
compressed during the normal Cassandra compaction process. If necessary, you can force existing SSTables to be
rewritten and compressed by using nodetool upgradesstables (Cassandra 1.0.4 or later) or nodetool scrub.

For example, to create a new column family with compression enabled using the Cassandra CLI, you would do the
following:

[default@demo] CREATE COLUMN FAMILY users WITH key_validation_class=UTF8Type AND column_metadata = [
{column_name: name, validation_class: UTF8Type} {column_name: email, validation_class: UTF8Type} {column_name:
state, validation_class: UTF8Type} {column_name: gender, validation_class: UTF8Type} {column_name: birth_year,
validation_class: LongType}] AND compression_options={sstable_compression:SnappyCompressor,
chunk_length_kb:64};

About Indexes in Cassandra
An index is a data structure that allows for fast, efficient lookup of data matching a given condition.

About Column Family Compression

52

mailto:default@demo

About Primary Indexes
In relational database design, a primary key is the unique key used to identify each row in a table. A primary key index,
like any index, speeds up random access to data in the table. The primary key also ensures record uniqueness, and
may also control the order in which records are physically clustered, or stored by the database.

In Cassandra, the primary index for a column family is the index of its row keys. Each node maintains this index for the
data it manages.

Rows are assigned to nodes by the cluster-configured partitioner and the keyspace-configured replica placement
strategy. The primary index in Cassandra allows looking up of rows by their row key. Since each node knows what
ranges of keys each node manages, requested rows can be efficiently located by scanning the row indexes only on the
relevant replicas.

With randomly partitioned row keys (the default in Cassandra), row keys are partitioned by their MD5 hash and cannot
be scanned in order like traditional b-tree indexes. Using an ordered partitioner does allow for range queries over rows,
but is not recommended because of the difficulty in maintaining even data distribution across nodes. See About Data
Partitioning in Cassandra for more information.

About Secondary Indexes
Secondary indexes in Cassandra refer to indexes on column values (to distinguish them from the primary row key index
for a column family). Cassandra supports secondary indexes of the type KEYS (similar to a hash index).

Secondary indexes allow for efficient querying by specific values using equality predicates (where column x = value y).
Also, queries on indexed values can apply additional filters to the result set for values of other columns.

Cassandra's built-in secondary indexes are best for cases when many rows contain the indexed value. The more unique
values that exist in a particular column, the more overhead you will have, on average, to query and maintain the index.
For example, suppose you had a user table with a billion users and wanted to look up users by the state they lived in.
Many users will share the same column value for state (such as CA, NY, TX, etc.). This would be a good candidate for a
secondary index. On the other hand, if you wanted to look up users by their email address (a value that is typically
unique for each user), it may be more efficient to manually maintain a dynamic column family as a form of an "index".
Even for columns containing unique data, it is often fine performance-wise to use secondary indexes for convenience,
as long as the query volume to the indexed column family is moderate and not under constant load.

Another advantage of secondary indexes is the operational ease of populating and maintaining the index. When you
create a secondary index on an existing column, it indexes the existing data in the background. Client-maintained
'column families as indexes' must be created manually; for example, if the state column had been indexed by creating
a column family such as users_by_state, your client application would have to populate the column family with data
from the users column family.

Building and Using Secondary Indexes
You can specify the KEYS index type when creating a column definition, or you can add it later to index an existing
column. Secondary indexes are built in the background automatically, without blocking reads or writes.

For example, in the Cassandra CLI, you can create a secondary index on a column when defining a column family (note
the index_type:KEYS specification for the state and birth_year columns):

[default@demo] create column family users with comparator=UTF8Type
... and column_metadata=[{column_name: full_name, validation_class: UTF8Type},
... {column_name: email, validation_class: UTF8Type},
... {column_name: birth_year, validation_class: LongType, index_type: KEYS},
... {column_name: state, validation_class: UTF8Type, index_type: KEYS}];

Or you can add an index to an existing column family:

[default@demo] update column family users with comparator=UTF8Type
... and column_metadata=[{column_name: full_name, validation_class: UTF8Type},
... {column_name: email, validation_class: UTF8Type},

About Primary Indexes

53

... {column_name: birth_year, validation_class: LongType, index_type: KEYS},

... {column_name: state, validation_class: UTF8Type, index_type: KEYS}];

Because of the secondary index created for state, its values can then be queried directly for users who live in a given
state. For example:

[default@demo] get users where state = 'TX';

Planning Your Data Model
Planning a data model in Cassandra has different design considerations than one may be used to from relational
databases. Ultimately, the data model you design depends on the data you want to capture and how you plan to access
it. However, there are some common design considerations for Cassandra data model planning.

Start with Queries
The best way to approach data modeling for Cassandra is to start with your queries and work backwards from there.
Think about the actions your application needs to perform, how you want to access the data, and then design column
families to support those access patterns.

For example, start with listing the all of the use cases your application needs to support. Think about the data you want
to capture and the lookups your application needs to do. Also note any ordering, filtering or grouping requirements. For
example, if you need events in chronological order, or if you only care about the last 6 months worth of data, those
would be factors in your data model design for Cassandra.

Denormalize to Optimize
In the relational world, the data model is usually designed up front with the goal of normalizing the data to minimize
redundancy. Normalization typically involves creating smaller, well-structured tables and then defining relationships
between them. During queries, related tables are joined to satisfy the request.

Cassandra does not have foreign key relationships like a relational database does, which means you cannot join
multiple column families to satisfy a given query request. Cassandra performs best when the data needed to satisfy a
given query is located in the same column family. Try to plan your data model so that one or more rows in a single
column family are used to answer each query. This sacrifices disk space (one of the cheapest resources for a server) in
order to reduce the number of disk seeks and the amount of network traffic.

Planning for Concurrent Writes
Within a column family, every row is known by its row key, a string of virtually unbounded length. The key has no
required form, but it must be unique within a column family. Unlike the primary key in a relational database, Cassandra
does not enforce unique-ness. Inserting a duplicate row key will upsert the columns contained in the insert statement
rather than return a unique constraint violation.

Using Natural or Surrogate Row Keys
One consideration is whether to use surrogate or natural keys for a column family. A surrogate key is a generated key
(such as a UUID) that uniquely identifies a row, but has no relation to the actual data in the row.

For some column families, the data may contain values that are guaranteed to be unique and are not typically updated
after a row is created. For example, the username in a users column family. This is called a natural key. Natural keys
make the data more readable, and remove the need for additional indexes or denormalization. However, unless your
client application ensures unique-ness, there is potential of over-writing column data.

Also, the natural key approach does not easily allow updates to the row key. For example, if your row key was an email
address and a user wanted to change their email address, you would have to create a new row with the new email
address and copy all of the existing columns from the old row to the new row.

Planning Your Data Model

54

UUID Types for Column Names
The UUID comparator type (universally unique id) is used to avoid collisions in column names. For example, if you
wanted to identify a column (such as a blog entry or a tweet) by its timestamp, multiple clients writing to the same row
key simultaneously could cause a timestamp collision, potentially overwriting data that was not intended to be
overwritten. Using the UUIDType to represent a type-1 (time-based) UUID can avoid such collisions.

Managing and Accessing Data in Cassandra
This section provides information about accessing and managing data in Cassandra via a client application. Cassandra
offers a number of client utilities and application programming interfaces (APIs) that can be used for developing
applications that utilize Cassandra for data storage and retrieval.

About Writes in Cassandra
Cassandra is optimized for very fast and highly available data writing. Relational databases typically structure tables in
order to keep data duplication at a minimum. The various pieces of information needed to satisfy a query are stored in
various related tables that adhere to a pre-defined structure. Because of the way data is structured in a relational
database, writing data is expensive, as the database server has to do additional work to ensure data integrity across the
various related tables. As a result, relational databases usually are not performant on writes.

Cassandra is optimized for write throughput. Cassandra writes are first written to a commit log (for durability), and then
to an in-memory table structure called a memtable. A write is successful once it is written to the commit log and
memory, so there is very minimal disk I/O at the time of write. Writes are batched in memory and periodically written to
disk to a persistent table structure called an SSTable (sorted string table). Memtables and SSTables are maintained per
column family. Memtables are organized in sorted order by row key and flushed to SSTables sequentially (no random
seeking as in relational databases).

SSTables are immutable (they are not written to again after they have been flushed). This means that a row is typically
stored across multiple SSTable files. At read time, a row must be combined from all SSTables on disk (as well as
unflushed memtables) to produce the requested data. To optimize this piecing-together process, Cassandra uses an
in-memory structure called a bloom filter. Each SSTable has a bloom filter associated with it. The bloom filter is used to
check if a requested row key exists in the SSTable before doing any disk seeks.

For a detailed explanation of how client read and write requests are handled in Cassandra, also see About Client
Requests in Cassandra.

About Compaction
In the background, Cassandra periodically merges SSTables together into larger SSTables using a process called
compaction. Compaction merges row fragments together, removes expired tombstones (deleted columns), and rebuilds
primary and secondary indexes. Since the SSTables are sorted by row key, this merge is efficient (no random disk I/O).
Once a newly merged SSTable is complete, the input SSTables are marked as obsolete and eventually deleted by the
JVM garbage collection (GC) process. However, during compaction, there is a temporary spike in disk space usage and
disk I/O.

Compaction impacts read performance in two ways. While a compaction is in progress, it temporarily increases disk I/O
and disk utilization which can impact read performance for reads that are not fulfilled by the cache. However, after a
compaction has been completed, off-cache read performance improves since there are fewer SSTable files on disk that
need to be checked in order to complete a read request.

As of Cassandra 1.0, there are two different compaction strategies that you can configure on a column family -
size-tiered compaction or leveled compaction. See Tuning Compaction for a description of these compaction strategies.

About Transactions and Concurrency Control
Unlike relational databases, Cassandra does not offer fully ACID-compliant transactions. There is no locking or
transactional dependencies when concurrently updating multiple rows or column families.

UUID Types for Column Names

55

ACID is an acronym used to describe transactional behavior in a relational database systems, which stands for:

• Atomic. Everything in a transaction succeeds or the entire transaction is rolled back.

• Consistent. A transaction cannot leave the database in an inconsistent state.

• Isolated. Transactions cannot interfere with each other.

• Durable. Completed transactions persist in the event of crashes or server failure.
Cassandra trades transactional isolation and atomicity for high availability and fast write performance. In Cassandra, a
write is atomic at the row-level, meaning inserting or updating columns for a given row key will be treated as one write
operation. Cassandra does not support transactions in the sense of bundling multiple row updates into one all-or-nothing
operation. Nor does it roll back when a write succeeds on one replica, but fails on other replicas. It is possible in
Cassandra to have a write operation report a failure to the client, but still actually persist the write to a replica.

For example, if using a write consistency level of QUORUM with a replication factor of 3, Cassandra will send the write
to 2 replicas. If the write fails on one of the replicas but succeeds on the other, Cassandra will report a write failure to the
client. However, the write is not automatically rolled back on the other replica.

Cassandra uses timestamps to determine the most recent update to a column. The timestamp is provided by the client
application. The latest timestamp always wins when requesting data, so if multiple client sessions update the same
columns in a row concurrently, the most recent update is the one that will eventually persist.

Writes in Cassandra are durable. All writes to a replica node are recorded both in memory and in a commit log before
they are acknowledged as a success. If a crash or server failure occurs before the memory tables are flushed to disk,
the commit log is replayed on restart to recover any lost writes.

About Inserts and Updates
Any number of columns may be inserted at the same time. When inserting or updating columns in a column family, the
client application specifies the row key to identify which column records to update. The row key is similar to a primary
key in that it must be unique for each row within a column family. However, unlike a primary key, inserting a duplicate
row key will not result in a primary key constraint violation - it will be treated as an UPSERT (update the specified
columns in that row if they exist or insert them if they do not).

Columns are only overwritten if the timestamp in the new version of the column is more recent than the existing column,
so precise timestamps are necessary if updates (overwrites) are frequent. The timestamp is provided by the client, so
the clocks of all client machines should be synchronized using NTP (network time protocol).

About Deletes
When deleting a row or a column in Cassandra, there are a few things to be aware of that may differ from what one
would expect in a relational database.

1. Deleted data is not immediately removed from disk. Data that is inserted into Cassandra is persisted to
SSTables on disk. Once an SSTable is written, it is immutable (the file is not updated by further DML operations).
This means that a deleted column is not removed immediately. Instead a marker called a tombstone is written to
indicate the new column status. Columns marked with a tombstone exist for a configured time period (defined by
the gc_grace_seconds value set on the column family), and then are permanently deleted by the compaction
process after that time has expired.

2. A deleted column can reappear if routine node repair is not run. Marking a deleted column with a tombstone
ensures that a replica that was down at the time of delete will eventually receive the delete when it comes back up
again. However, if a node is down longer than the configured time period for keeping tombstones (defined by the
gc_grace_seconds value set on the column family), then the node can possibly miss the delete altogether, and
replicate deleted data once it comes back up again. To prevent deleted data from reappearing, administrators
must run regular node repair on every node in the cluster (by default, every 10 days).

About Inserts and Updates

56

3. The row key for a deleted row may still appear in range query results. When you delete a row in Cassandra,
it marks all columns for that row key with a tombstone. Until those tombstones are cleared by compaction, you
have an empty row key (a row that contains no columns). These deleted keys can show up in results of
get_range_slices() calls. If your client application performs range queries on rows, you may want to have if
filter out row keys that return empty column lists.

About Hinted Handoff Writes
Hinted handoff is an optional feature of Cassandra that reduces the time to restore a failed node to consistency once the
failed node returns to the cluster. It can also be used for absolute write availability for applications that cannot tolerate a
failed write, but can tolerate inconsistent reads.

When a write is made, Cassandra attempts to write to all replicas for the affected row key. If a replica is known to be
down at the time the write occurs, a corresponding live replica will store a hint. The hint consists of location information
(the replica node and row key that require a replay), as well as the actual data being written. There is minimal overhead
to storing hints on replica nodes that already own the written row, since the data being written is already accounted for
by the usual write process. The hint data itself is relatively small in comparison to most data rows.

If all replicas for the affected row key are down, it is still possible for a write to succeed if using a write consistency level
of ANY. Under this scenario, the hint and written data are stored on the coordinator node, but will not be available to
reads until the hint gets written to the actual replicas that own the row. The ANY consistency level provides absolute
write availability at the cost of consistency, as there is no guarantee as to when written data will be available to reads
(depending how long the replicas are down). Using the ANY consistency level can also potentially increase load on the
cluster, as coordinator nodes must temporarily store extra rows whenever a replica is not available to accept a write.

Note
By default, hints are only saved for one hour before they are dropped. If all replicas are down at the time of write, and
they all remain down for longer than the configured time of max_hint_window_in_ms, you could potentially lose a write
made at consistency level ANY.

Hinted handoff does not count towards any other consistency level besides ANY. For example, if using a consistency
level of ONE and all replicas for the written row are down, the write will fail regardless of whether a hint is written or not.

When a replica that is storing hints detects via gossip that the failed node is alive again, it will begin streaming the
missed writes to catch up the out-of-date replica.

Note
Hinted handoff does not completely replace the need for regular node repair operations.

About Reads in Cassandra
When a read request for a row comes in to a node, the row must be combined from all SSTables on that node that
contain columns from the row in question, as well as from any unflushed memtables, to produce the requested data. To
optimize this piecing-together process, Cassandra uses an in-memory structure called a bloom filter: each SSTable has
a bloom filter associated with it that is used to check if any data for the requested row exists in the SSTable before doing
any disk I/O. As a result, Cassandra is very performant on reads when compared to other storage systems, even for
read-heavy workloads.

As with any database, reads are fastest when the most in-demand data (or hot working set) fits into memory. Although
all modern storage systems rely on some form of caching to allow for fast access to hot data, not all of them degrade
gracefully when the cache capacity is exceeded and disk I/O is required. Cassandra's read performance benefits from
built-in caching, but it also does not dip dramatically when random disk seeks are required. When I/O activity starts to
increase in Cassandra due to increased read load, it is easy to remedy by adding more nodes to the cluster.

For rows that are accessed frequently, Cassandra has a built-in key cache (and an optional row cache). See Tuning the
Cache for more information about optimizing read performance using the built-in caching features.

About Hinted Handoff Writes

57

For a detailed explanation of how client read and write requests are handled in Cassandra, also see About Client
Requests in Cassandra.

About Data Consistency in Cassandra
In Cassandra, consistency refers to how up-to-date and synchronized a row of data is on all of its replicas. Cassandra
extends the concept of eventual consistency by offering tunable consistency. For any given read or write operation, the
client application decides how consistent the requested data should be.

In addition to tunable consistency, Cassandra has a number of built-in repair mechanisms to ensure that data remains
consistent across replicas.

Tunable Consistency for Client Requests
Consistency levels in Cassandra can be set on any read or write query. This allows application developers to tune
consistency on a per-query basis depending on their requirements for response time versus data accuracy. Cassandra
offers a number of consistency levels for both reads and writes.

About Write Consistency
When you do a write in Cassandra, the consistency level specifies on how many replicas the write must succeed before
returning an acknowledgement to the client application.

The following consistency levels are available, with ANY being the lowest consistency (but highest availability), and ALL
being the highest consistency (but lowest availability). QUORUM is a good middle-ground ensuring strong consistency,
yet still tolerating some level of failure.

A quorum is calculated as (rounded down to a whole number):

(replication_factor / 2) + 1

For example, with a replication factor of 3, a quorum is 2 (can tolerate 1 replica down). With a replication factor of 6, a
quorum is 4 (can tolerate 2 replicas down).

Level Description
ANY A write must be written to at least one node. If all replica nodes for the given row key are down,

the write can still succeed once a hinted handoff has been written. Note that if all replica nodes
are down at write time, an ANY write will not be readable until the replica nodes for that row
key have recovered.

ONE A write must be written to the commit log and memory table of at least one replica node.

QUORUM A write must be written to the commit log and memory table on a quorum of replica nodes.

LOCAL_QUORUM A write must be written to the commit log and memory table on a quorum of replica nodes in
the same data center as the coordinator node. Avoids latency of inter-data center
communication.

EACH_QUORUM A write must be written to the commit log and memory table on a quorum of replica nodes in all
data centers.

ALL A write must be written to the commit log and memory table on all replica nodes in the cluster
for that row key.

About Read Consistency
When you do a read in Cassandra, the consistency level specifies how many replicas must respond before a result is
returned to the client application.

Cassandra checks the specified number of replicas for the most recent data to satisfy the read request (based on the
timestamp).

About Data Consistency in Cassandra

58

The following consistency levels are available, with ONE being the lowest consistency (but highest availability), and ALL
being the highest consistency (but lowest availability). QUORUM is a good middle-ground ensuring strong consistency,
yet still tolerating some level of failure.

A quorum is calculated as (rounded down to a whole number):

(replication_factor / 2) + 1

For example, with a replication factor of 3, a quorum is 2 (can tolerate 1 replica down). With a replication factor of 6, a
quorum is 4 (can tolerate 2 replicas down).

Level Description
ONE Returns a response from the closest replica (as determined by the snitch). By default, a read

repair runs in the background to make the other replicas consistent.

QUORUM Returns the record with the most recent timestamp once a quorum of replicas has responded.

LOCAL_QUORUM Returns the record with the most recent timestamp once a quorum of replicas in the current
data center as the coordinator node has reported. Avoids latency of inter-data center
communication.

EACH_QUORUM Returns the record with the most recent timestamp once a quorum of replicas in each data
center of the cluster has responded.

ALL Returns the record with the most recent timestamp once all replicas have responded. The read
operation will fail if a replica does not respond.

Note
LOCAL_QUORUM and EACH_QUORUM are designed for use in multi-data center clusters using a rack-aware replica
placement strategy (such as NetworkTopologyStrategy) and a properly configured snitch.

Choosing Client Consistency Levels
Choosing a consistency level for reads and writes involves determining your requirements for consistent results (always
reading the most recently written data) versus read or write latency (the time it takes for the requested data to be
returned or for the write to succeed).

If latency is a top priority, consider a consistency level of ONE (only one replica node must successfully respond to the
read or write request). There is a higher probability of stale data being read with this consistency level (as the replicas
contacted for reads may not always have the most recent write). For some applications, this may be an acceptable
trade-off. If it is an absolute requirement that a write never fail, you may also consider a write consistency level of ANY.
This consistency level has the highest probability of a read not returning the latest written values (see hinted handoff).

If consistency is top priority, you can ensure that a read will always reflect the most recent write by using the following
formula:

(nodes_written + nodes_read) > replication_factor

For example, if your application is using the QUORUM consistency level for both write and read operations and you are
using a replication factor of 3, then this ensures that 2 nodes are always written and 2 nodes are always read. The
combination of nodes written and read (4) being greater than the replication factor (3) ensures strong read consistency.

Consistency Levels for Multi-Data Center Clusters
A client read or write request to a Cassandra cluster always specifies the consistency level it requires. Ideally, you want
a client request to be served by replicas in the same data center in order to avoid latency. Contacting multiple data
centers for a read or write request can slow down the response. The consistency level LOCAL_QUORUM is specifically
designed for doing quorum reads and writes in multi data center clusters.

Choosing Client Consistency Levels

59

A consistency level of ONE is also fine for applications with less stringent consistency requirements. A majority of
Cassandra users do writes at consistency level ONE. With this consistency, the request will always be served by the
replica node closest to the coordinator node that received the request (unless the dynamic snitch determines that the
node is performing poorly and routes it elsewhere).

Keep in mind that even at consistency level ONE or LOCAL_QUORUM, the write is still sent to all replicas for the written
key, even replicas in other data centers. The consistency level just determines how many replicas are required to
respond that they received the write.

Specifying Client Consistency Levels
Consistency level is specified by the client application when a read or write request is made. The default consistency
level may differ depending on the client you are using.

For example, in CQL the default consistency level for reads and writes is ONE. If you wanted to use QUORUM instead,
you could specify that consistency level in the client request as follows:

SELECT * FROM users WHERE state='TX' USING CONSISTENCY QUORUM;

About Cassandra's Built-in Consistency Repair Features
Cassandra has a number of built-in repair features to ensure that data remains consistent across replicas. These
features are:

• Read Repair - For reads, there are two types of read requests that a coordinator can send to a replica; a direct
read request and a background read repair request. The number of replicas contacted by a direct read request is
determined by the consistency level specified by the client. Background read repair requests are sent to any
additional replicas that did not receive a direct request. To ensure that frequently-read data remains consistent,
the coordinator compares the data from all the remaining replicas that own the row in the background, and if they
are inconsistent, issues writes to the out-of-date replicas to update the row to reflect the most recently written
values. Read repair can be configured per column family (using read_repair_chance), and is enabled by default.

• Anti-Entropy Node Repair - For data that is not read frequently, or to update data on a node that has been down
for a while, the nodetool repair process (also referred to as anti-entropy repair) ensures that all data on a replica is
made consistent. Node repair should be run routinely as part of regular cluster maintenance operations.

• Hinted Handoff - Writes are always sent to all replicas for the specified row regardless of the consistency level
specified by the client. If a node happens to be down at the time of write, its corresponding replicas will save hints
about the missed writes, and then handoff the affected rows once the node comes back online. Hinted handoff
ensures data consistency due to short, transient node outages. The hinted handoff feature is configurable at the
node-level in the cassandra.yaml file See About Hinted Handoff Writes for more information on how hinted handoff
works.

Cassandra Client APIs
When Cassandra was first released, it originally provided a Thrift RPC-based API as the foundation for client developers
to build upon. This proved to be suboptimal: Thrift is too low-level to use without a more idiomatic client wrapping it, and
supporting new features (such as secondary indexes in 0.7 and counters in 0.8) became hard to maintain across these
clients for many languages. Also, by not having client development hosted within the Apache Cassandra project itself,
incompatible clients proliferated in the open source community, all with different levels of stability and features. It
became hard for application developers to choose the best API to fit their needs.

About Cassandra CLI
Cassandra 0.7 introduced a stable version of its command-line client interface, cassandra-cli, that can be used for
common data definition (DDL), data manipulation (DML), and data exploration. Although not intended for application
development, it is a good way to get started defining your data model and becoming familiar with Cassandra.

Specifying Client Consistency Levels

60

http://thrift.apache.org

About CQL
Cassandra 0.8 was the first release to include the Cassandra Query Language (CQL). As with SQL, clients built on CQL
only need to know how to interpret query resultset objects. CQL is the future of Cassandra client API development.
CQL drivers are hosted within the Apache Cassandra project.

Note
CQL version 2.0, which has improved support for several commands, is compatible with Cassandra version 1.0 but
not version 0.8.x.

CQL syntax in based on SQL (Structured Query Language), the standard for relational database manipulation. Although
CQL has many similarities to SQL, it does not change the underlying Cassandra data model. There is no support for
JOINs, for example.

The Python driver includes a command-line interface, cql.sh. See Getting Started with CQL.

Other High-Level Clients
The Thrift API will continue to be supported for backwards compatibility. Using a high-level client is highly recommended
over using raw Thrift calls.

A list of other available clients may be found on the Client Options page.

The Java, Python, and PHP clients are well supported.

Java: Hector Client API
Hector provides Java developers with features lacking in Thrift, including connection pooling, JMX integration, failover
and extensive logging. Hector is the first client to implement CQL.

For more information, see the Hector web site.

Python: Pycassa Client API
Pycassa is a Python client API with features such as connection pooling, SuperColumn support, and a method to map
existing classes to Cassandra column families.

For more information, see the Pycassa documentation.

PHP: Phpcassa Client API
Phpcassa is a PHP client API with features such as connection pooling, a method for counting rows, and support for
secondary indexes.

For more information, see the Phpcassa documentation.

Getting Started Using the Cassandra CLI
The Cassandra CLI client utility can be used to do basic data definition (DDL) and data manipulation (DML) within a
Cassandra cluster. It is located in /usr/bin/cassandra-cli in packaged installations or
$CASSANDRA_HOME/bin/cassandra-cli in binary installations.

To start the CLI and connect to a particular Cassandra instance, launch the script together with -host and -port
options. It will connect to the cluster name specified in the cassandra.yaml file (which is Test Cluster` by default). For
example, if you have a single-node cluster on localhost:

$ cassandra-cli -host localhost -port 9160

Or to connect to a node in a multi-node cluster, give the IP address of the node:

About CQL

61

http://wiki.apache.org/cassandra/ClientOptions
http://hector-client.org
http://pycassa.github.com/pycassa/
http://thobbs.github.com/phpcassa/

$ cassandra-cli -host 110.123.4.5 -port 9160

To see help on the various commands available:

[default@unknown] help;

For detailed help on a specific command, use help <command>;. For example:

[default@unknown] help SET;

Note
A command is not sent to the server unless it is terminated by a semicolon (;). Hitting the return key without a
semicolon at the end of the line echos an ellipsis (. . .), which indicates that the CLI expects more input.

Creating a Keyspace
You can use the Cassandra CLI commands described in this section to create a keyspace. In this example, we create a
keyspace called demo, with a replication factor of 1 and using the SimpleStrategy replica placement strategy.

Note the single quotes around the string value of placement_strategy:

[default@unknown] CREATE KEYSPACE demo
with placement_strategy = 'org.apache.cassandra.locator.SimpleStrategy'
and strategy_options = [{replication_factor:1}];

You can verify the creation of a keyspace with the SHOW KEYSPACES command. The new keyspace is listed along with
the system keyspace and any other existing keyspaces.

Creating a Column Family
First, connect to the keyspace where you want to define the column family with the USE command.

[default@unknown] USE demo;

In this example, we create a users column family in the demo keyspace. In this column family we are defining a few
columns; full_name, email, state, gender, and birth_year. This is considered a static column family - we are
defining the column names up front and most rows are expected to have more-or-less the same columns.

Notice the settings of comparator, key_validation_class and validation_class. These are setting the
default encoding used for column names, row key values and column values. In the case of column names, the
comparator also determines the sort order.

[default@unknown] USE demo;

[default@demo] CREATE COLUMN FAMILY users
WITH comparator = UTF8Type
AND key_validation_class=UTF8Type
AND column_metadata = [
{column_name: full_name, validation_class: UTF8Type}
{column_name: email, validation_class: UTF8Type}
{column_name: state, validation_class: UTF8Type}
{column_name: gender, validation_class: UTF8Type}
{column_name: birth_year, validation_class: LongType}
];

Next, create a dynamic column family called blog_entry. Notice that here we do not specify column definitions as the
column names are expected to be supplied later by the client application.

Creating a Keyspace

62

[default@demo] CREATE COLUMN FAMILY blog_entry
WITH comparator = TimeUUIDType
AND key_validation_class=UTF8Type
AND default_validation_class = UTF8Type;

Creating a Counter Column Family
A counter column family contains counter columns. A counter column is a specific kind of column whose user-visible
value is a 64-bit signed integer that can be incremented (or decremented) by a client application. The counter column
tracks the most recent value (or count) of all updates made to it. A counter column cannot be mixed in with regular
columns of a column family, you must create a column family specifically to hold counters.

To create a column family that holds counter columns, set the default_validation_class of the column family to
CounterColumnType. For example:

[default@demo] CREATE COLUMN FAMILY page_view_counts
WITH default_validation_class=CounterColumnType
AND key_validation_class=UTF8Type AND comparator=UTF8Type;

To insert a row and counter column into the column family (with the initial counter value set to 0):

[default@demo] INCR page_view_counts['www.datastax.com'][home] BY 0;

To increment the counter:

[default@demo] INCR page_view_counts['www.datastax.com'][home] BY 1;

Inserting Rows and Columns
The following examples illustrate using the SET command to insert columns for a particular row key into the users
column family. In this example, the row key is bobbyjo and we are setting each of the columns for this user. Notice
that you can only set one column at a time in a SET command.

[default@demo] SET users['bobbyjo']['full_name']='Robert Jones';

[default@demo] SET users['bobbyjo']['email']='bobjones@gmail.com';

[default@demo] SET users['bobbyjo']['state']='TX';

[default@demo] SET users['bobbyjo']['gender']='M';

[default@demo] SET users['bobbyjo']['birth_year']='1975';

In this example, the row key is yomama and we are just setting some of the columns for this user.

[default@demo] SET users['yomama']['full_name']='Cathy Smith';

[default@demo] SET users['yomama']['state']='CA';

[default@demo] SET users['yomama']['gender']='F';

[default@demo] SET users['yomama']['birth_year']='1969';

In this example, we are creating an entry in the blog_entry column family for row key yomama:

[default@demo] SET blog_entry['yomama'][timeuuid()] = 'I love my new shoes!';

Creating a Counter Column Family

63

Note
The Cassandra CLI uses a default consistency level of ONE for all write and read operations. Specifying different
consistency levels is not supported within Cassandra CLI.

Reading Rows and Columns
Use the GET command within Cassandra CLI to retrieve a particular row from a column family. Use the LIST
command to return a batch of rows and their associated columns (default limit of rows returned is 100).

For example, to return the first 100 rows (and all associated columns) from the users column family:

[default@demo] LIST users;

Cassandra stores all data internally as hex byte arrays by default. If you do not specify a default row key validation
class, column comparator and column validation class when you define the column family, Cassandra CLI will expect
input data for row keys, column names, and column values to be in hex format (and data will be returned in hex format).

To pass and return data in human-readable format, you can pass a value through an encoding function. Available
encodings are:

• ascii

• bytes

• integer (a generic variable-length integer type)

• lexicalUUID

• long

• utf8
For example to return a particular row key and column in UTF8 format:

[default@demo] GET users[utf8('bobby')][utf8('full_name')];

You can also use the ASSUME command to specify the encoding in which column family data should be returned for the
entire client session. For example, to return row keys, column names, and column values in ASCII-encoded format:

[default@demo] ASSUME users KEYS AS ascii;
[default@demo] ASSUME users COMPARATOR AS ascii;
[default@demo] ASSUME users VALIDATOR AS ascii;

Setting an Expiring Column
When you set a column in Cassandra, you can optionally set an expiration time, or time-to-live (TTL) attribute for it.

For example, suppose we are tracking coupon codes for our users that expire after 10 days. We can define a
coupon_code column and set an expiration date on that column. For example:

[default@demo] SET users['bobbyjo']
[utf8('coupon_code')] = utf8('SAVE20') WITH ttl=864000;

After ten days, or 864,000 seconds have elapsed since the setting of this column, its value will be marked as deleted
and no longer be returned by read operations. Note, however, that the value is not actually deleted from disk until
normal Cassandra compaction processes are completed.

Indexing a Column
The CLI can be used to create secondary indexes (indexes on column values). You can add a secondary index when
you create a column family or add it later using the UPDATE COLUMN FAMILY command.

Reading Rows and Columns

64

For example, to add a secondary index to the birth_year column of the users column family:

[default@demo] UPDATE COLUMN FAMILY users
WITH comparator = UTF8Type
AND column_metadata = [{column_name: birth_year, validation_class: LongType, index_type: KEYS}];

Because of the secondary index created for the column birth_year, its values can be queried directly for users born
in a given year as follows:

[default@demo] GET users WHERE birth_date = 1969;

Deleting Rows and Columns
The Cassandra CLI provides the DEL command to delete a row or column (or subcolumn).

For example, to delete the coupon_code column for the yomama row key in the users column family:

[default@demo] DEL users ['yomama']['coupon_code'];

[default@demo] GET users ['yomama'];

Or to delete an entire row:

[default@demo] DEL users ['yomama'];

Dropping Column Families and Keyspaces
With Cassandra CLI commands you can drop column families and keyspaces in much the same way that tables and
databases are dropped in a relational database. This example shows the commands to drop our example users
column family and then drop the demo keyspace altogether:

[default@demo] DROP COLUMN FAMILY users;

[default@demo] DROP KEYSPACE demo;

Getting Started with CQL
Developers can access CQL commands in a variety of ways. Drivers are available for Python, Twisted Python, and
JDBC-based client programs.

For the purposes of administrators, the most direct way to run simple CQL commands is via the Python-based cqlsh
command-line client.

Starting the CQL Command-Line Program (cqlsh)
As of Apache Cassandra version 1.0.5 and DataStax Community version 1.0.1, the cqlsh client is installed with
Cassandra in $CASSANDRA_HOME/bin/cqlsh for tarball installations, or /usr/bin/cqlsh for packaged
installations.

When you start cqlsh, you must provide the IP of a Cassandra node to connect to (default is localhost) and the
RPC connection port (default is 9160). For example:

$ cqlsh 103.263.89.126 9160
cqlsh>

To exit cqlsh type exit at the command prompt.

cqlsh> exit

Deleting Rows and Columns

65

Running CQL Commands with cqlsh
Commands in cqlsh combine SQL-like syntax that maps to Cassandra concepts and operations. If you are just getting
started with CQL, make sure to refer to the CQL Reference.

As of CQL version 2.0, cqlsh has the following limitations in support for Cassandra operations and data objects:

• Super Columns are not supported; column_type and subcomparator arguments are not valid

• Composite columns are not supported

• Only a subset of all the available column family storage properties can be set using CQL.
The rest of this section provides some guidance with simple CQL commands using cqlsh. This is a similar (but not
identical) set of commands as the set described in Using the Cassandra Client.

Creating a Keyspace
You can use the cqlsh commands described in this section to create a keyspace. In creating an example keyspace for
Twissandra, we will assume a desired replication factor of 3 and implementation of the NetworkTopologyStrategy replica
placement strategy. For more information on these keyspace options, see About Replication in Cassandra.

Note the single quotes around the string value of strategy_class:

cqlsh> CREATE KEYSPACE twissandra WITH
 strategy_class = 'NetworkTopologyStrategy'
 AND strategy_options:DC1 = 3;

Creating a Column Family
For this example, we use cqlsh to create a users column family in the newly created keyspace. Note the USE
command to connect to the twissandra keyspace.

cqlsh> USE twissandra;

cqlsh> CREATE COLUMNFAMILY users (
 ... KEY varchar PRIMARY KEY,
 ... password varchar,
 ... gender varchar,
 ... session_token varchar,
 ... state varchar,
 ... birth_year bigint);

Inserting and Retrieving Columns
Though in production scenarios it is more practical to insert columns and column values programmatically, it is possible
to use cqlsh for these operations. The example in this section illustrates using the INSERT and SELECT commands
to insert and retrieve some columns in the users column family.

The following commands create and then get a user record for "jsmith." The record includes a value for the password
column we created when we created the column family, as well as an expiration time for the password column. Note that
the user name "jsmith" is the row key, or in CQL terms, the primary key.

cqlsh> INSERT INTO users (KEY, password) VALUES ('jsmith', 'ch@ngem3a') USING TTL 86400;
cqlsh> SELECT * FROM users WHERE KEY='jsmith';
u'jsmith' | u'password',u'ch@ngem3a' | u'ttl', 86400

Adding Columns with ALTER COLUMNFAMILY
The ALTER COLUMNFAMILY command lets you add new columns to a column family. For example, to add a
coupon_code column with the varchar validation type to the users column family:

Running CQL Commands with cqlsh

66

cqlsh> ALTER TABLE users ADD coupon_code varchar;

This creates the column metadata and adds the column to the column family schema, but does not update any existing
rows.

Altering Column Metadata
With ALTER COLUMNFAMILY, you can change the type of a column any time after it is defined or added to a column
family. For example, if we decided the coupon_code column should store coupon codes in the form of integers, we
could change the validation type as follows:

cqlsh> ALTER TABLE users ALTER coupon_code TYPE int;

Note that existing coupon codes will not be validated against the new type, only newly inserted values.

Specifying Column Expiration with TTL
Both the INSERT and UPDATE commands support setting a column expiration time (TTL). In the INSERT example
above for the key jsmith we set the password column to expire at 86400 seconds, or one day. If we wanted to extend
the expiration period to five days, we could use the UPDATE command a shown:

cqlsh> UPDATE users USING TTL 432000 SET 'password' = 'ch@ngem3a' WHERE KEY = 'jsmith';

Dropping Column Metadata
If your aim is to remove a column's metadata entirely, including the column name and validation type, you can use
ALTER TABLE <columnFamily> DROP <column>. The following command removes the name and validator without
affecting or deleting any existing data:

cqlsh> ALTER TABLE users DROP coupon_code;

After you run this command, clients can still add new columns named coupon_code to the users column family --
but they will not be validated until you explicitly add a type again.

Indexing a Column
cqlsh can be used to create secondary indexes, or indexes on column values. In this example, we will create an index
on the state and birth_year columns in the users column family.

cqlsh> CREATE INDEX state_key ON users (state);
cqlsh> CREATE INDEX birth_year_key ON users (birth_year);

Because of the secondary index created for the two columns, their values can be queried directly as follows:

cqlsh> SELECT * FROM users
 ... WHERE gender='f' AND
 ... state='TX' AND
... birth_year='1968';
u'user1' | u'birth_year',1968 | u'gender',u'f' | u'password',u'ch@ngem3' | u'state',u'TX'

Deleting Columns and Rows
cqlsh provides the DELETE command to delete a column or row. In this example we will delete user jsmith's session
token column, and then delete jsmith's row entirely.

cqlsh> DELETE session_token FROM users where KEY = 'jsmith';
cqlsh> DELETE FROM users where KEY = 'jsmith';

Altering Column Metadata

67

Note, however, that the phenomena called "range ghosts" in Cassandra may mean that keys for deleted rows are still
retrieved by SELECT statements and other "get" operations. Deleted values, including range ghosts, are removed
completely by the first compaction following deletion.

Dropping Column Families and Keyspaces
With cqlsh commands you can drop column families and keyspaces in much the same way that tables and databases
are dropped in relational models. This example shows the commands to drop our example users column family and then
drop the twissandra keyspace altogether:

cqlsh> DROP COLUMNFAMILY users;
cqlsh> DROP KEYSPACE twissandra;

Configuration
Like any modern server-based software, Cassandra has a number of configuration options to tune the system towards
specific workloads and environments. Substantial efforts have been made to provide meaningful default configuration
values, but given the inherently complex nature of distributed systems coupled with the wide variety of possible
workloads, most production deployments will require some modifications of the default configuration.

Node and Cluster Configuration (cassandra.yaml)
The cassandra.yaml file is the main configuration file for Cassandra. This file is located in
/etc/cassandra/conf/cassandra.yaml in packaged installations or
$CASSANDRA_HOME/conf/cassandra.yaml in binary installations. After changing properties in this file, you must
restart the node for the changes to take effect.

Option Default Value
authenticator org.apache.cassandra.auth.AllowAllAuthenticator

authority org.apache.cassandra.auth.AllowAllAuthority

auto_bootstrap false

broadcast_address same as listen_address

cluster_name Test Cluster

column_index_size_in_kb 64

commitlog_directory /var/lib/cassandra/commitlog

commitlog_sync periodic

commitlog_sync_period_in_ms 10000 (ten seconds)

commitlog_total_space_in_mb 4096

compaction_preheat_key_cache true

compaction_throughput_mb_per_sec 16

concurrent_compactors One per CPU core

concurrent_reads 32

concurrent_writes 32

data_file_directories /var/lib/cassandra/data

dynamic_snitch true

dynamic_snitch_badness_threshold 0.0

dynamic_snitch_reset_interval_in_ms 600000

Dropping Column Families and Keyspaces

68

http://wiki.apache.org/cassandra/FAQ#range_ghosts

dynamic_snitch_update_interval_in_ms 100

endpoint_snitch org.apache.cassandra.locator.SimpleSnitch

flush_largest_memtables_at 0.75

hinted_handoff_enabled true

hinted_handoff_throttle_delay_in_ms 50

in_memory_compaction_limit_in_mb 64

incremental_backups false

index_interval 128

initial_token n/a

internode_encryption none

keystore conf/.keystore

keystore_password cassandra

listen_address localhost

max_hint_window_in_ms 3600000 (one hour)

memtable_flush_queue_size 4

memtable_flush_writers One per data directory

memtable_total_space_in_mb 1/3 of the heap

multithreaded_compaction false

partitioner org.apache.cassandra.dht.RandomPartitioner

phi_convict_threshold 8

reduce_cache_capacity_to 0.6

reduce_cache_sizes_at 0.85

request_scheduler org.apache.cassandra.scheduler.NoScheduler

request_scheduler_id keyspace

rpc_address localhost

rpc_keepalive true

rpc_max_threads Unlimited

rpc_min_threads 16

rpc_port 9160

rpc_recv_buff_size_in_bytes n/a

rpc_send_buff_size_in_bytes n/a

rpc_server_type sync

rpc_timeout_in_ms 10000

saved_caches_directory /var/lib/cassandra/saved_caches

seeds 127.0.0.1

seed_provider org.apache.cassandra.locator.SimpleSeedProvider

sliced_buffer_size_in_kb 64

Dropping Column Families and Keyspaces

69

snapshot_before_compaction false

storage_port 700

stream_throughput_outbound_megabits_per_sec400

thrift_framed_transport_size_in_mb 15

thrift_max_message_length_in_mb 16

truststore conf/.truststore

truststore_password cassandra

Node and Cluster Initialization Properties
The following properties are used to initialize a new cluster or when introducing a new node to an established cluster,
and should be evaluated and changed as needed before starting a node for the first time. These properties control how
a node is configured within a cluster in regards to inter-node communication, data partitioning, and replica placement.

auto_bootstrap
When set to true, populates a new node with a range of data when it joins an established cluster based on the setting of
initial_token. If initial_token is not set, the newly added node will insert itself into the ring by splitting the token range of
the most heavily loaded node. Leave set to false when initializing a brand new cluster.

broadcast_address
If your Cassandra cluster is deployed across multiple Amazon EC2 regions (and you are using the
EC2MultiRegionSnitch), you should set broadcast_address to public IP address of the node (and listen_address to the
private IP). If not declared, defaults to the same address as specified for listen_address.

cluster_name
The name of the cluster. All nodes participating in a cluster must have the same value.

commitlog_directory
The directory where the commit log will be stored. For optimal write performance, DataStax recommends the commit log
be on a separate disk partition (ideally a separate physical device) from the data file directories.

data_file_directories
The directory location where column family data (SSTables) will be stored.

initial_token
The initial token assigns the node token position in the ring, and assigns a range of data to the node when it first starts
up. The initial token can be left unset when introducing a new node to an established cluster using auto_bootstrap.
Otherwise, the token value depends on the partitioner you are using. With the random partitioner, this value will be a
number between 0 and 2**127. With the byte order preserving partitioner, this value will be a byte array of hex values
based on your actual row key values. With the order preserving and collated order preserving partitioners, this value will
be a UTF-8 string based on your actual row key values. See Calculating Tokens for more information.

listen_address
The IP address or hostname that other Cassandra nodes will use to connect to this node. If left blank, you must have
hostname resolution correctly configured on all nodes in your cluster so that the hostname resolves to the correct IP
address for this node (using /etc/hostname, /etc/hosts or DNS).

Node and Cluster Initialization Properties

70

partitioner
Sets the partitioning method used when assigning a row key to a particular node (also see initial_token).
Allowed values are:

• org.apache.cassandra.dht.RandomPartitioner (default)

• org.apache.cassandra.dht.ByteOrderedPartitioner

• org.apache.cassandra.dht.OrderPreservingPartitioner (deprecated)

• org.apache.cassandra.dht.CollatingOrderPreservingPartitioner (deprecated)

rpc_address
The listen address for remote procedure calls (client connections). To listen on all configured interfaces, set to 0.0.0.0. If
left blank, you must have hostname resolution correctly configured on all nodes in your cluster so that the hostname
resolves to the correct IP address for this node (using /etc/hostname, /etc/hosts or DNS). Default Value: localhost
Allowed Values: An IP address, hostname, or leave unset to resolve the address using the hostname configuration of
the node.

rpc_port
The port for remote procedure calls (client connections) and the Thrift service. Default is 9160.

saved_caches_directory
The directory location where column family key and row caches will be stored.

seed_provider
The seed provider is a pluggable interface for providing a list of seed nodes. The default seed provider requires a
comma-delimited list of seeds.

seeds
When a node joins a cluster, it contacts the seed node(s) to determine the ring topology and obtain gossip information
about the other nodes in the cluster. Every node in the cluster should have the same list of seeds, specified as a
comma-delimited list of IP addresses. In multi data center clusters, the seed list should include at least one node from
each data center (replication group).

storage_port
The port for inter-node communication. Default port is 7000.

endpoint_snitch
Sets the snitch to use for locating nodes and routing requests. In deployments with rack-aware replication
placement strategies, use either RackInferringSnitch, PropertyFileSnitch, or EC2Snitch (if on Amazon EC2). Has
a dependency on the replica placement_strategy, which is defined on a keyspace. The PropertyFileSnitch also
requires a cassandra-topology.properties configuration file. Snitches included with Cassandra are:

• org.apache.cassandra.locator.SimpleSnitch

• org.apache.cassandra.locator.RackInferringSnitch

• org.apache.cassandra.locator.PropertyFileSnitch

• org.apache.cassandra.locator.EC2Snitch

partitioner

71

Performance Tuning Properties
The following properties are used to tune performance and system resource utilization (memory, disk I/O, CPU, etc.) for
reads and writes.

column_index_size_in_kb
Column indexes are added to a row after the data reaches this size. This usually happens if there are a large number of
columns in a row or the column values themselves are large. If you consistently read only a few columns from each row,
this should be kept small as it denotes how much of the row data must be deserialized to read the column.

commitlog_sync
The method that Cassandra will use to acknowledge writes. The default mode of periodic is used in conjunction with
commitlog_sync_period_in_ms to control how often the commit log is synchronized to disk. Periodic syncs are
acknowledged immediately. In batch mode, writes are not acknowledged until fsynced to disk. It will wait the configured
number of milliseconds for other writes before performing a sync. Allowed Values are periodic (default) or batch.

commitlog_sync_period_in_ms
Determines how often (in milliseconds) to send the commit log to disk when commitlog_sync is set to periodic mode.

commitlog_total_space_in_mb
When the commitlog size on a node exceeds this threshold, Cassandra will flush memtables to disk for the oldest
commitlog segments, thus allowing those log segments to be removed. This reduces the amount of data to replay on
startup, and prevents infrequently-updated column families from keeping commit log segments around indefinitely. This
replaces the per-column family storage setting memtable_flush_after_mins.

compaction_preheat_key_cache
When set to true, cached row keys are tracked during compaction, and re-cached to their new positions in the
compacted SSTable. If you have extremely large key caches for your column families, set to false (see the keys_cached
attribute set on a column family).

compaction_throughput_mb_per_sec
Throttles compaction to the given total throughput across the entire system. The faster you insert data, the faster you
need to compact in order to keep the SSTable count down. The recommended Value is 16-32 times the rate of write
throughput (in MBs/second). Setting to 0 disables compaction throttling.

concurrent_compactors
Sets the number of concurrent compaction processes allowed to run simultaneously on a node. Defaults to one
compaction process per CPU core.

concurrent_reads
For workloads with more data than can fit in memory, the bottleneck will be reads that need to fetch data from disk.
Setting to (16 * number_of_drives) allows operations to queue low enough in the stack so that the OS and drives can
reorder them.

concurrent_writes
Writes in Cassandra are almost never I/O bound, so the ideal number of concurrent writes depends on the number of
CPU cores in your system. The recommended value is (8 * number_of_cpu_cores).

Performance Tuning Properties

72

flush_largest_memtables_at
When Java heap usage after a full concurrent mark sweep (CMS) garbage collection is higher than this percentage, the
largest memtables will be flushed to disk in order to free memory. This parameter serves as more of an emergency
measure for preventing sudden out-of-memory (OOM) errors rather than a strategic tuning mechanism. It is most
effective under light to moderate load, or read-heavy workloads. The default value of .75 means flush memtables when
Java heap usage is above 75 percent total heap size. 1.0 disables this feature.

in_memory_compaction_limit_in_mb
Size limit for rows being compacted in memory. Larger rows spill to disk and use a slower two-pass compaction
process. When this occurs, a message is logged specifying the row key. The recommended value is 5 to 10 percent of
the available Java heap size.

index_interval
Each SSTable has an index file containing row keys and the position at which that row starts in the data file. At startup,
Cassandra reads a sample of that index into memory. By default 1 row key out of every 128 is sampled. To find a row,
Cassandra performs a binary search on the sample, then does just one disk read of the index block corresponding to
the closest sampled entry. The larger the sampling, the more effective the index is (at the cost of memory usage). A
smaller value for this property results in a larger, more effective index. Generally, a value between 128 and 512 in
combination with a large column family key cache offers the best trade off between memory usage and performance.
You may want to increase the sample size if you have small rows, thus decreasing the index size and memory usage.
For large rows, decreasing the sample size may improve read performance.

memtable_flush_queue_size
The number of full memtables to allow pending flush, that is, waiting for a writer thread. At a minimum, this should be set
to the maximum number of secondary indexes created on a single column family.

memtable_flush_writers
Sets the number of memtable flush writer threads. These will be blocked by disk I/O, and each one will hold a memtable
in memory while blocked. If you have a large Java heap size and many data directories (see data_file_directories), you
can increase this value for better flush performance. By default this is set to the number of data directories defined
(which is 1).

memtable_total_space_in_mb
Specifies total memory used for all column family memtables on a node. Defaults to a third of your JVM heap size. This
replaces the old per-column family storage settings memtable_operations_in_millions and
memtable_throughput_in_mb.

multithreaded_compaction
When set to true (it is false by default), each compaction operation will use one thread per SSTable being merged in
addition to one thread per core. This is typically only useful on nodes with SSD hardware. With regular disks, the goal is
to limit the disk I/O for compaction (see compaction_throughput_mb_per_sec).

reduce_cache_capacity_to
Sets the size percentage to which maximum cache capacity is reduced when Java heap usage reaches the threshold
defined by reduce_cache_sizes_at. Together with flush_largest_memtables_at, these properties are an emergency
measure for preventing sudden out-of-memory (OOM) errors.

reduce_cache_sizes_at

flush_largest_memtables_at

73

When Java heap usage after a full concurrent mark sweep (CMS) garbage collection is higher than this percentage,
Cassandra will reduce the cache capacity to the fraction of the current size as specified by reduce_cache_capacity_to.
The default is 85 percent (0.85). 1.0 disables this feature.

sliced_buffer_size_in_kb
The buffer size (in kilobytes) to use for reading contiguous columns. This should match the size of the columns typically
retrieved using query operations involving a slice predicate.

stream_throughput_outbound_megabits_per_sec
Throttles all outbound streaming file transfers on a node to the specified throughput in Mb per second. Cassandra does
mostly sequential I/O when streaming data during bootstrap or repair, which can lead to saturating the network
connection and degrading client performance. The default is 400 Mb/s or 50 MB/s.

Remote Procedure Call Tuning Properties
The following properties are used to configure and tune remote procedure calls (client connections).

request_scheduler
Defines a scheduler to handle incoming client requests according to a defined policy. This scheduler only
applies to client requests, not inter-node communication. Useful for throttling client requests in
implementations that have multiple keyspaces. Allowed Values are:

• org.apache.cassandra.scheduler.NoScheduler (default)

• org.apache.cassandra.scheduler.RoundRobinScheduler

• A Java class that implements the RequestScheduler interface If using the RoundRobinScheduler, there are
additional request_scheduler_options properties.

request_scheduler_id
An identifier on which to perform request scheduling. Currently the only valid option is keyspace.

request_scheduler_options
Contains a list of additional properties that define configuration options for request_scheduler. NoScheduler does not
have any options. RoundRobinScheduler has the following additional configuration properties: throttle_limit,
default_weight, weights.

throttle_limit
The number of active requests per client. Requests beyond this limit are queued up until running requests complete.
The default is 80. Recommended value is ((concurrent_reads + concurrent_writes) * 2).

default_weight
The default weight controls how many requests are handled during each turn of the RoundRobin. The default is 1.

weights
Allows control of weight per keyspace during each turn of the RoundRobin. If not set, each keyspace uses the
default_weight. Takes a list of list of keyspaces: weights.

rpc_keepalive

sliced_buffer_size_in_kb

74

Enable or disable keepalive on client connections.

rpc_max_threads
Cassandra uses one thread-per-client for remote procedure calls. For a large number of client connections, this can
cause excessive memory usage for the thread stack. Connection pooling on the client side is highly recommended.
Setting a maximum thread pool size acts as a safeguard against misbehaved clients. If the maximum is reached,
Cassandra will block additional connections until a client disconnects.

rpc_min_threads
Sets the minimum thread pool size for remote procedure calls.

rpc_recv_buff_size_in_bytes
Sets the receiving socket buffer size for remote procedure calls.

rpc_send_buff_size_in_bytes
Sets the sending socket buffer size in bytes for remote procedure calls.

rpc_timeout_in_ms
The time in milliseconds that a node will wait on a reply from other nodes before the command is failed.

rpc_server_type
Cassandra provides three options for the rpc server. The default is sync because hsha is about 30% slower on
Windows. On Linux, sync and hsha performance is about the same with hsha using less memory.

• sync - (default) One connection per thread in the rpc pool. For a very large number of clients, memory will be your
limiting factor; on a 64 bit JVM, 128KB is the minimum stack size per thread. Connection pooling is very, very
strongly recommended.

• hsha Half synchronous, half asynchronous. The rpc thread pool is used to manage requests, but the threads are
multiplexed across the different clients.

• async - Deprecated and will be removed in the next major release. Do not use.

thrift_framed_transport_size_in_mb
Specifies the frame size in megabytes (maximum field length) for Thrift. 0 disables framing. This option is deprecated in
favor of thrift_max_message_length_in_mb.

thrift_max_message_length_in_mb
The maximum length of a Thrift message in megabytes, including all fields and internal Thrift overhead.

Internode Communication and Fault Detection Properties

dynamic_snitch
When set to true (default), enables the dynamic snitch layer that monitors read latency and, when possible, routes
requests away from poorly-performing nodes.

dynamic_snitch_badness_threshold

rpc_max_threads

75

Sets a performance threshold for dynamically routing requests away from a poorly performing node. A value of 0.2
means Cassandra would continue to prefer the static snitch values until the node response time was 20 percent worse
than the best performing node.

Until the threshold is reached, incoming client requests are statically routed to the closest replica (as determined by the
configured snitch). Having requests consistently routed to a given replica can help keep a working set of data hot when
read repair is less than 100% or disabled.

dynamic_snitch_reset_interval_in_ms
Time interval in milliseconds to reset all node scores (allowing a bad node to recover).

dynamic_snitch_update_interval_in_ms
The time interval in milliseconds for calculating read latency.

hinted_handoff_enabled
Enables or disables hinted handoff.

hinted_handoff_throttle_delay_in_ms
When a node detects that a node for which it is holding hints has recovered, it begins sending the hints to that node.
This specifies a sleep interval (in milliseconds) after delivering each row or row fragment in an effort to throttle traffic to
the recovered node.

max_hint_window_in_ms
Defines how long in milliseconds to generate and save hints for an unresponsive node. After this interval, hints are
dropped. This can prevent a sudden demand for resources when a node is brought back online and the rest of the
cluster attempts to replay a large volume of hinted writes. The default is one hour (3600000 ms).

phi_convict_threshold
The Phi convict threshold adjusts the sensitivity of the failure detector on an exponential scale . Lower values increase
the likelihood that an unresponsive node will be marked as down, while higher values decrease the likelihood that
transient failures will cause a node failure. In unstable network environments (such as EC2 at times), raising the value to
10 or 12 will prevent false failures. Values higher than 12 and lower than 5 are not recommended. The default is 8.

Automatic Backup Properties

incremental_backups
Backs up data updated since the last snapshot was taken. When enabled, each time an SSTable is flushed, a hard link
is copied into a /backups subdirectory of the keyspace data directory.

snapshot_before_compaction
Defines whether or not to take a snapshot before each compaction. Be careful using this option, since Cassandra does
not clean up older snapshots automatically. This can be useful to back up data when there is a data format change.

Security Properties

authenticator

dynamic_snitch_reset_interval_in_ms

76

The default value disables authentication. Basic authentication is provided using the SimpleAuthenticator, which uses
the access.properties and password.properties configuration files to configure authentication privileges.
Allowed values are: * org.apache.cassandra.auth.AllowAllAuthenticator *
org.apache.cassandra.auth.SimpleAuthenticator * A Java class that implements the IAuthenticator interface

Note
The SimpleAuthenticator and SimpleAuthority classes have been moved to the example directory of the
Apache Cassandra project repository as of release 1.0. They are no longer available in the packaged and binary
distributions. They never provided actual security, and in their current state are only meant as examples.

authority
The default value disables user access control (all users can access all resources). To control read/write permissions to
keyspaces and column families, use the SimpleAuthority, which uses the access.properties configuration file
to define per-user access. Allowed values are: * org.apache.cassandra.auth.AllowAllAuthority *
org.apache.cassandra.auth.SimpleAuthority * A Java class that implements the IAuthority interface

internode_encryption
Enables or disables encryption of inter-node communication using TLS_RSA_WITH_AES_128_CBC_SHA as the cipher
suite for authentication, key exchange and encryption of the actual data transfers. To encrypt all inter-node
communications, set to all. You must also generate keys and provide the appropriate key and trust store locations and
passwords.

keystore
Description: The location of a Java keystore (JKS) suitable for use with Java Secure Socket Extension (JSSE), the Java
version of the Secure Sockets Layer (SSL) and Transport Layer Security (TLS) protocols. The keystore contains the
private key used to encrypt outgoing messages.

keystore_password
Password for the keystore.

truststore
The location of a truststore containing the trusted certificate used to authenticate remote servers.

truststore_password
Password for the truststore.

Keyspace and Column Family Storage Configuration
Many aspects of storage configuration are set on a per-keyspace or per-column family basis. These attributes can be
manipulated programmatically, but in most cases the practical method for defining keyspace and column family
attributes is to use the Cassandra CLI or CQL interfaces.

Prior to release 0.7.3, keyspace and column family attributes could be specified in cassandra.yaml, but that is no
longer true in 0.7.4 and later. These attributes are now stored in the system keyspace within Cassandra.

authority

77

https://github.com/apache/cassandra/tree/trunk/examples/simple_authentication

Note
The attribute names documented in this section are the names as they are stored in the system keyspace within
Cassandra. Most of these attributes can be set in the various client applications, such as Cassandra CLI or CQL.
There may be slight differences in how these attributes are named depending on how they are implemented in the
client.

Keyspace Attributes
A keyspace must have a user-defined name and a replica placement strategy. It also has replication strategy options,
which is a container attribute for replication factor or the number of replicas per data center.

Option Default Value
ks_name n/a (A user-defined value is required)

placement_strategy org.apache.cassandra.locator.SimpleStrategy

strategy_options n/a (container attribute)

name
Required. The name for the keyspace.

placement_strategy
Required. Determines how replicas for a keyspace will be distributed among nodes in the ring.

Allowed values are:

• org.apache.cassandra.locator.SimpleStrategy

• org.apache.cassandra.locator.NetworkTopologyStrategy

• org.apache.cassandra.locator.OldNetworkTopologyStrategy (deprecated)
These options are described in detail in the replication section.

Note
NetworkTopologyStrategy and OldNetworkTopologyStrategy require a properly configured snitch to be
able to determine rack and data center locations of a node (see endpoint_snitch).

strategy_options
Specifies configuration options for the chosen replication strategy.

For SimpleStrategy, it specifies replication_factor in the format of
replication_factor:number_of_replicas.

For NetworkTopologyStrategy, it specifies the number of replicas per data center in a comma separated list of
datacenter_name:number_of_replicas. Note that what you specify for datacenter_name depends on the
cluster-configured snitch you are using. There is a correlation between the data center name defined in the keyspace
strategy_options and the data center name as recognized by the snitch you are using. The nodetool ring command
prints out data center names and rack locations of your nodes if you are not sure what they are.

See Choosing Keyspace Replication Options for guidance on how to best configure replication strategy and strategy
options for your cluster.

Setting and updating strategy options with the Cassandra CLI requires a slightly different command syntax than other
attributes; note the brackets and curly braces in this example:

Keyspace Attributes

78

[default@unknown] CREATE KEYSPACE test
WITH placement_strategy = 'NetworkTopologyStrategy'
AND strategy_options=[{us-east:6,us-west:3}];

Column Family Attributes
The following attributes can be declared per column family.

Option Default Value
column_metadata n/a (container attribute)

column_type Standard

comment n/a

compaction_strategy SizeTieredCompactionStrategy

compaction_strategy_options n/a (container attribute)

comparator BytesType

compare_subcolumns_with BytesType

compression_options n/a (container attribute)

default_validation_class n/a

gc_grace_seconds 864000 (10 days)

key_validation_class n/a

key_cache_save_period_in_seconds n/a

keys_cached 200000

max_compaction_threshold 32

min_compaction_threshold 4

memtable_flush_after_mins ignored in 1.0 and later releases

memtable_operations_in_millions ignored in 1.0 and later releases

memtable_throughput_in_mb ignored in 1.0 and later releases

cf_name n/a (A user-defined value is required)

read_repair_chance 0.1 (repair 10% of the time)

replicate_on_write true

rows_cached 0 (disabled by default)

row_cache_provider ConcurrentLinkedHashCacheProvider

row_cache_save_period_in_seconds n/a

column_metadata
Column metadata defines attributes of a column. Values for name and validation_class are required, though the
default_validation_class for the column family is used if no validation_class is specified. Note that index_type must
be set to create a secondary index for a column. index_name is not valid unless index_type is also set.

Column Family Attributes

79

Name Description
name Binds a validation_class and (optionally) an index to a column.

validation_class Type used to check the column value.

index_name Name for the secondary index.

index_type Type of index. Currently the only supported value is KEYS.

Setting and updating column metadata with the Cassandra CLI requires a slightly different command syntax than other
attributes; note the brackets and curly braces in this example:

[default@demo] UPDATE COLUMN FAMILY users WITH comparator=UTF8Type
AND column_metadata=[{column_name: full_name, validation_class: UTF8Type, index_type: KEYS}];

column_type
Defaults to Standard for regular column families. For super column families, use Super.

comment
A human readable comment describing the column family.

compaction_strategy
Sets the compaction strategy for the column family. The available strategies are:

• SizeTieredCompactionStrategy - This is the default compaction strategy and the only compaction strategy
available in pre-1.0 releases. This strategy triggers a minor compaction whenever there are a number of
similar sized SSTables on disk (as configured by min_compaction_threshold). This strategy causes bursts in
I/O activity while a compaction is in process, followed by longer and longer lulls in compaction activity as
SSTable files grow larger in size. These I/O bursts can negatively effect read-heavy workloads, but typically
do not impact write performance. Watching disk capacity is also important when using this strategy, as
compactions can temporarily double the size of SSTables for a column family while a compaction is in
progress.

• LeveledCompactionStrategy - The leveled compaction strategy limits the size of SSTables to a small file size
(5 MB by default) so that SSTables do not continue to grow in size with each successive compaction. Disk I/O
is more uniform and predictable as SSTables are continuously being compacted into progressively larger
levels. At each level, row keys are merged into non-overlapping SSTables. This can improve performance for
reads, because Cassandra can determine which SSTables in each level to check for the existence of row key
data. This compaction strategy is modeled after Google's leveldb implementation.

compaction_strategy_options
Sets options related to the chosen compaction_strategy. Currently only LeveledCompactionStrategy has options.

Option Default Value Description
sstable_size_in_mb 5 Sets the file size for leveled SSTables. A compaction is

triggered when unleveled SSTables (newly flushed SSTable
files in Level 0) exceeds 4 * sstable_size_in_mb.

Setting and updating compaction strategy options with the Cassandra CLI requires a slightly different command syntax
than other attributes; note the brackets and curly braces in this example:

[default@demo] UPDATE COLUMN FAMILY users WITH compaction_strategy=LeveledCompactionStrategy
AND compaction_strategy_options=[{sstable_size_in_mb: 10}];

column_type

80

http://leveldb.googlecode.com/svn/trunk/doc/impl.html

comparator
Defines the data types used to validate and sort column names. There are several built-in column comparators
available. Note that the comparator cannot be changed after a column family is created.

compare_subcolumns_with
Required when column_type is "Super". Same as comparator but for sub-columns of a SuperColumn.

For attributes of columns, see column_metadata.

compression_options
This is a container attribute for setting compression options on a column family. It contains the following options:

Option Description
sstable_compression Specifies the compression algorithm to use when compressing SSTable files.

Cassandra supports two built-in compression classes: SnappyCompressor
(Snappy compression library) and DeflateCompressor (Java zip
implementation). Snappy compression offers faster compression/decompression
while the Java zip compression offers better compression ratios. Choosing the
right one depends on your requirements for space savings over read
performance. For read-heavy workloads, Snappy compression is recommended.
Developers can also implement custom compression classes using the
org.apache.cassandra.io.compress.ICompressor interface.

chunk_length_kb Sets the compression chunk size in kilobytes. The default value (64) is a good
middle-ground for compressing column families with either wide rows or with
skinny rows. With wide rows, it allows reading a 64kb slice of column data
without decompressing the entire row. For skinny rows, although you may still
end up decompressing more data than requested, it is a good trade-off between
maximizing the compression ratio and minimizing the overhead of
decompressing more data than is needed to access a requested row.The
compression chunk size can be adjusted to account for read/write access
patterns (how much data is typically requested at once) and the average size of
rows in the column family.

Setting and updating compression options with the Cassandra CLI requires a slightly different command syntax than
other attributes; note the brackets and curly braces in this example:
[default@demo] UPDATE COLUMN FAMILY users WITH compression_options=[{sstable_compression:SnappyCompressor, chunk_length_kb:64}];

default_validation_class
Defines the data type used to validate column values. There are several built-in column validators available.

gc_grace_seconds
Specifies the time to wait before garbage collecting tombstones (deletion markers). Defaults to 864000, or 10 days,
which allows a great deal of time for consistency to be achieved prior to deletion. In many deployments this interval can
be reduced, and in a single-node cluster it can be safely set to zero.

Note
This property is called gc_grace in the cassandra-cli client.

key_cache_save_period_in_seconds

comparator

81

Sets number of seconds between saving key caches: the key caches can be saved periodically, and if one exists on
startup it will be loaded.

Note
This property is called key_cache_save_period in the cassandra-cli client.

keys_cached
Defines how many key locations will be kept in memory per SSTable (see rows_cached for details on caching actual
row values). This can be a fixed number of keys or a fraction (for example 0.5 means 50 percent).

DataStax recommends a fixed sized cache over a relative sized cache. Only use relative cache sizing when you are
confident that the data in the column family will not continue to grow over time. Otherwise, your cache will grow as your
data set does, potentially causing unplanned memory pressure.

key_validation_class
Defines the data type used to validate row key values. There are several built-in key validators available, however
CounterColumnType (distributed counters) cannot be used as a row key validator.

name
Required. The user-defined name of the column family.

read_repair_chance
Specifies the probability with which read repairs should be invoked on non-quorum reads. Must be between 0 and 1.
Defaults to 0.1 (perform read repair 10% of the time). Lower values improve read throughput, but increase the chances
of seeing stale values if you are not using a strong consistency level.

replicate_on_write
When set to true, replicates writes to all affected replicas regardless of the consistency level specified by the client for
a write request. For counter column families, this should always be set to true.

max_compaction_threshold
Sets the maximum number of SSTables to allow in a minor compaction when
compaction_strategy=SizeTieredCompactionStrategy. Obsolete as of Cassandra 0.8 with the addition of
compaction throttling (see cassandra.yaml parameter compaction_throughput_mb_per_sec).

Setting this to 0 disables minor compactions. Defaults to 32.

min_compaction_threshold
Sets the minimum number of SSTables to trigger a minor compaction when
compaction_strategy=sizeTieredCompactionStrategy. Raising this value causes minor compactions to start
less frequently and be more I/O-intensive. Setting this to 0 disables minor compactions. Defaults to 4.

memtable_flush_after_mins
Deprecated as of Cassandra 1.0. Can still be declared (for backwards compatibility) but settings will be ignored. Use the
cassandra.yaml parameter commitlog_total_space_in_mb instead.

memtable_operations_in_millions

keys_cached

82

Deprecated as of Cassandra 1.0. Can still be declared (for backwards compatibility) but settings will be ignored. Use the
cassandra.yaml parameter commitlog_total_space_in_mb instead.

memtable_throughput_in_mb
Deprecated as of Cassandra 1.0. Can still be declared (for backwards compatibility) but settings will be ignored. Use the
cassandra.yaml parameter commitlog_total_space_in_mb instead.

rows_cached
Specifies how many rows to cache in memory. This can be a fixed number of rows or a fraction (for example 0.5 means
50 percent).

Using a row cache means that the entire row is cached in memory. This can be detrimental to performance in cases
where rows are large, or where rows are frequently modified or removed.

row_cache_provider
Specifies the row cache to use for the column family. Allowed values are: *
ConcurrentLinkedHashCacheProvider - Rows are cached using the JVM heap, providing the same row cache
behavior as Cassandra versions prior to 0.8. * (default) SerializingCacheProvider - Cached rows are serialized
and stored in memory off of the JVM heap, which can reduce garbage collection (GC) pressure on the JVM and thereby
improve system performance. Serialized rows are also 8-12 times smaller than unserialized rows. This is the
recommended setting, as long as you have jna.jar in the CLASSPATH to enable native methods.

row_cache_save_period_in_seconds
Sets the number of seconds between saving row caches: the row caches can be saved periodically, and if one exists on
startup it will be loaded.

Java and System Environment Settings Configuration
There are two files that control environment settings for Cassandra:

• conf/cassandra-env.sh - Java Virtual Machine (JVM) configuration settings

• bin/cassandra-in.sh - Sets up Cassandra environment variables such as CLASSPATH and JAVA_HOME.

Heap Sizing Options
If you decide to change the Java heap sizing, both MAX_HEAP_SIZE and HEAP_NEWSIZE should should be set
together in conf/cassandra-env.sh (if you set one, set the other as well). See the section on Tuning Java Heap
Size for more information on choosing the right Java heap size.

• MAX_HEAP_SIZE - Sets the maximum heap size for the JVM. The same value is also used for the minimum heap
size. This allows the heap to be locked in memory at process start to keep it from being swapped out by the OS.
Defaults to half of available physical memory.

• HEAP_NEWSIZE - The size of the young generation. The larger this is, the longer GC pause times will be. The
shorter it is, the more expensive GC will be (usually). A good guideline is 100 MB per CPU core.

JMX Options
Cassandra exposes a number of statistics and management operations via Java Management Extensions (JMX). Java
Management Extensions (JMX) is a Java technology that supplies tools for managing and monitoring Java applications
and services. Any statistic or operation that a Java application has exposed as an MBean can then be monitored or
manipulated using JMX. JConsole, nodetool and DataStax OpsCenter are examples of JMX-compliant management
tools.

memtable_throughput_in_mb

83

By default, the conf/cassandra-env.sh file configures JMX to listen on port 7199 without authentication. See the
table below for more information on commonly changed JMX configuration properties.

• com.sun.management.jmxremote.port - The port on which Cassandra listens from JMX connections

• com.sun.management.jmxremote.ssl - Enable/disable SSL for JMX

• com.sun.management.jmxremote.authenticate - Enable/disable remote authentication for JMX

• -Djava.rmi.server.hostname - Sets the interface hostname or IP that JMX should use to connect.
Uncomment and set if you are having trouble connecting.

Further Reading on JVM Tuning
The remaining options are optimal across a wide variety of workloads and environments and are not frequently
changed. See the Sun JVM options list for more information on JVM tuning parameters.

Authentication and Authorization Configuration

Note
The SimpleAuthenticator and SimpleAuthority classes have been moved to the example directory of the
Apache Cassandra project repository as of release 1.0. They are no longer available in the packaged and binary
distributions. They never provided actual security, and in their current state are only meant as examples.

Using authentication and authorization requires configuration changes in cassandra.yaml and two additional files:
one for assigning users and their permissions to keyspaces and column families, and the other for assigning passwords
to those users. These files are named access.properties and passwd.properties, respectively, and are
located in the examples directory of the Apache Cassandra project repository. To test simple authentication, you can
move these files to the conf directory.

To set up simple authentication and authorization

1. Edit cassandra.yaml, setting org.apache.cassandra.auth.SimpleAuthenticator as the
authenticator value. The default value of AllowAllAuthenticator is equivalent to no authentication.

2. Edit access.properties, adding entries for users and their permissions to read and write to specified
keyspaces and column families. See access.properties below for details on the correct format.

3. Make sure that users specified in access.properties have corresponding entries in passwd.properties.
See passwd.properties below for details and examples.

4. After making the required configuration changes, you must specify the properties files when starting Cassandra
with the flags -Dpasswd.properties and -Daccess.properties. For example:

cd $CASSANDRA_HOME
sh bin/cassandra -f -Dpasswd.properties=conf/passwd.properties -Daccess.properties=conf/access.properties

access.properties
This file contains entries in the format KEYSPACE[.COLUMNFAMILY].PERMISSION=USERS where

• KEYSPACE is the keyspace name.

• COLUMNFAMILY is the column family name.

• PERMISSION is one of <ro> or <rw> for read-only or read-write respectively.

• USERS is a comma delimited list of users from passwd.properties.
For example, to control access to Keyspace1 and give jsmith and Elvis read-only permissions while allowing dilbert full
read-write access to add and remove column families, you would create the following entries:

Further Reading on JVM Tuning

84

http://blogs.sun.com/watt/resource/jvm-options-list.html
https://github.com/apache/cassandra/tree/trunk/examples/simple_authentication
https://github.com/apache/cassandra/tree/trunk/examples/simple_authentication

Keyspace1.<ro>=jsmith,Elvis Presley
Keyspace1.<rw>=dilbert

To provide a finer level of access control to the Standard1 column family in Keyspace1, you would create the following
entry to allow the specified users read-write access:

Keyspace1.Standard1.<rw>=jsmith,Elvis Presley,dilbert

The access.properties file also contains a simple list of users who have permissions to modify the list of
keyspaces:

<modify-keyspaces>=jsmith

passwd.properties
This file contains name/value pairs in which the names match users defined in access.properties and the values
are user passwords. Passwords are in clear text unless the passwd.mode=MD5 system property is provided.

jsmith=havebadpass
Elvis Presley=graceland4ever
dilbert=nomoovertime

Logging Configuration
In some situations, the output provided by Cassandra's JMX MBeans and the nodetool utility are not enough to
diagnose issues. If you find yourself in a place where you need more information about the runtime behavior of a
specific Cassandra node, you can increase the logging levels to get more diagnostic information on specific portions of
the system.

Cassandra uses a SLF4J to provide logging functionality; by default a log4j backend is used. Many of the core
Cassandra classes have varying levels of logging output available which can be increased in one of two ways:

1. Updating the log4j-server.properties file

2. Through JMX

Logging Levels via the Properties File
To update the via properties file, edit conf/log4j-server.properties to include the following two lines (warning -
this will generate a lot of logging output on even a moderately trafficked cluster):

log4j.logger.org.apache.cassandra.db=DEBUG
log4j.logger.org.apache.cassandra.service.StorageProxy=DEBUG

This will apply the DEBUG log level to all the classes in org.apache.cassandra.db package and below as well as
to the StorageProxy class directly. Cassandra checks the log4j configuration file every ten seconds, and applies
changes without needing a restart.

Note that by default, logging will go to /var/log/cassandra/system.log; the location of this log file can be
changed as well - just update the log4j.appender.R.File path to where you would like the log file to exist, and
ensure that the directory exists and is writable by the process running Cassandra.

Additionally, the default configuration will roll the log file once the size exceeds 20MB and will keep up to 50 backups.
These values may be changed as well to meet your requirements.

Logging Levels via JMX
To change logging levels via JMX, bring up the JConsole tool and attach it to the CassandraDaemon process. Locate
the StorageService MBean and find setLog4jLevel under the Operations list.

passwd.properties

85

This operation takes two arguments - a class qualifier and a logging level. The class qualifier can either be a full class
name or any portion of a package name, similar to the log4j-server.properties configuration above except
without the initial log4j.logger appender assignment. The level must be one of the standard logging levels in use by
Log4j.

In keeping with our initial example, to adjust the logging output of StorageProxy to DEBUG, the first argument would be
org.apache.cassandra.service.StorageProxy, and the second one DEBUG. On a system with traffic, you
should see the effects of this change immediately.

Operations

Monitoring a Cassandra Cluster
Understanding the performance characteristics of your Cassandra cluster is critical to diagnosing issues and planning
capacity.

Cassandra exposes a number of statistics and management operations via Java Management Extensions (JMX). Java
Management Extensions (JMX) is a Java technology that supplies tools for managing and monitoring Java applications
and services. Any statistic or operation that a Java application has exposed as an MBean can then be monitored or
manipulated using JMX.

During normal operation, Cassandra outputs information and statistics that you can monitor using JMX-compliant tools
such as JConsole, the Cassandra nodetool utility, or the DataStax OpsCenter management console. With the same
tools, you can perform certain administrative commands and operations such as flushing caches or doing a repair.

Monitoring Using DataStax OpsCenter
DataStax OpsCenter is a graphical user interface for monitoring and administering all nodes in a Cassandra cluster from
one centralized console. DataStax OpsCenter is bundled with DataStax support offerings, or you can register for a free
version licensed for development or non-production use.

OpsCenter provides a graphical representation of performance trends in a summary view that is hard to obtain with
other monitoring tools. The GUI provides views for different time periods as well as the capability to drill down on single
data points. Both real-time and historical performance data for a Cassandra or Brisk cluster are available in OpsCenter.
OpsCenter metrics are captured and stored within Cassandra.

Operations

86

http://www.datastax.com/products/opscenter
http://www.datastax.com/products/opscenter

The performance metrics viewed within OpsCenter can be customized according to your monitoring needs.
Administrators can also perform routine node administration tasks from OpsCenter. Metrics within OpsCenter are
divided into three general categories: column family metrics, cluster metrics, and OS metrics. For many of the available
metrics, you can choose to view aggregated cluster-wide information, or view information on a per-node basis.

Monitoring Using nodetool
The nodetool utility is a command-line interface for monitoring Cassandra and performing routine database operations. It
is included in the Cassandra distribution and is typically run directly from an operational Cassandra node.

The nodetool utility supports the most important JMX metrics and operations, and includes other useful commands
for Cassandra administration. This utility is commonly used to output a quick summary of the ring and its current state of
general health with the ring command. For example:

nodetool -h localhost -p 7199 ring
Address Status State Load Owns Range Ring
 95315431979199388464207182617231204396

Monitoring Using nodetool

87

10.194.171.160 Down Normal ? 39.98 61078635599166706937511052402724559481 |<--|
10.196.14.48 Up Normal 3.16 KB 30.01 78197033789183047700859117509977881938 | |
10.196.14.239 Up Normal 3.16 KB 30.01 95315431979199388464207182617231204396 |-->|

The nodetool utility provides commands for viewing detailed metrics for column family metrics, server metrics, and
compaction statistics. Commands are also available for important operations such as decommissioning a node, running
repair, and moving partitioning tokens.

Monitoring Using JConsole
JConsole is a JMX-compliant tool for monitoring Java applications such as Cassandra. It is included with Sun JDK 5.0
and higher. JConsole consumes the JMX metrics and operations exposed by Cassandra and displays them in a
well-organized GUI. For each node monitored, JConsole provides these six separate tab views:

• Overview - Displays overview information about the Java VM and monitored values.

• Memory - Displays information about memory use.Threads - Displays information about thread use.

• Classes - Displays information about class loading.

• VM Summary - Displays information about the Java Virtual Machine (VM).

• Mbeans - Displays information about MBeans.
The Overview and Memory tabs contain information that is very useful for Cassandra developers. The Memory tab
allows you to compare heap and non-heap memory usage, and provides a control to immediately perform Java garbage
collection.

For specific Cassandra metrics and operations, the most important area of JConsole is the MBeans tab. This tab lists
the following Cassandra MBeans:

• org.apache.cassandra.db - Includes caching, column family metrics, and compaction.

• org.apache.cassandra.internal - Internal server operations such as gossip and hinted handoff.
• org.apache.cassandra.net - Inter-node communication including FailureDetector, MessagingService and

StreamingService.

• org.apache.cassandra.request - Tasks related to read, write, and replication operations.
When you select an MBean in the tree, its MBeanInfo and MBean Descriptor are both displayed on the right, and any
attributes, operations or notifications appear in the tree below it. For example, selecting and expanding the
org.apache.cassandra.db MBean to view available actions for a column family results in a display like the
following:

Monitoring Using JConsole

88

If you choose to monitor Cassandra using JConsole, keep in mind that JConsole consumes a significant amount of
system resources. For this reason, DataStax recommends running JConsole on a remote machine rather than on the
same host as a Cassandra node.

Compaction Metrics
Monitoring compaction performance is an important aspect of knowing when to add capacity to your cluster. The
following attributes are exposed through CompactionManagerMBean:

Attribute Description
CompletedTasks Number of completed compactions since the last start of this Cassandra instance

PendingTasks Number of estimated tasks remaining to perform

ColumnFamilyInProgress ColumnFamily currently being compacted. null if no compactions are in progress.

BytesTotalInProgress Total number of data bytes (index and filter are not included) being compacted. null
if no compactions are in progress.

Compaction Metrics

89

BytesCompacted The progress of the current compaction. null if no compactions are in progress.

Thread Pool Statistics
Cassandra maintains distinct thread pools for different stages of execution. Each of these thread pools provide statistics
on the number of tasks that are active, pending and completed. Watching trends on these pools for increases in the
pending tasks column is an excellent indicator of the need to add additional capacity. Once a baseline is established,
alarms should be configured for any increases past normal in the pending tasks column. See below for details on each
thread pool (this list can also be obtained via command line using nodetool tpstats).

Thread Pool Description
AE_SERVICE_STAGE Shows anti-entropy tasks

CONSISTENCY-MANAGER Handles the background consistency checks if they were triggered from the client's
consistency level <consistency>

FLUSH-SORTER-POOL Sorts flushes that have been submitted

FLUSH-WRITER-POOL Writes the sorted flushes

GOSSIP_STAGE Activity of the Gossip protocol on the ring

LB-OPERATIONS The number of load balancing operations

LB-TARGET Used by nodes leaving the ring

MEMTABLE-POST-FLUSHERMemtable flushes that are waiting to be written to the commit log.

MESSAGE-STREAMING-POOLStreaming operations. Usually triggered by bootstrapping or decommissioning nodes.

MIGRATION_STAGE Tasks resulting from the call of system_* methods in the API that have modified the
schema

MISC_STAGE

MUTATION_STAGE API calls that are modifying data

READ_STAGE API calls that have read data

RESPONSE_STAGE Response tasks from other nodes to message streaming from this node

STREAM_STAGE Stream tasks from this node

Read/Write Latency Metrics
Cassandra keeps tracks latency (averages and totals) of read, write and slicing operations at the server level through
StorageProxyMBean.

ColumnFamily Statistics
For individual column families, ColumnFamilyStoreMBean provides the same general latency attributes as
StorageProxyMBean. Unlike StorageProxyMBean, ColumnFamilyStoreMBean has a number of other statistics
that are important to monitor for performance trends. The most important of these are listed below:

Attribute Description
MemtableDataSize The total size consumed by this column family's data (not including meta data)

MemtableColumnsCount Returns the total number of columns present in the memtable (across all keys)

MemtableSwitchCount How many times the memtable has been flushed out

RecentReadLatencyMicros The average read latency since the last call to this bean

RecentWriterLatencyMicros The average write latency since the last call to this bean

Thread Pool Statistics

90

LiveSSTableCount The number of live SSTables for this ColumnFamily

The first three Memtable attributes are discussed in detail on the Tuning Cassandra page.

The recent read latency and write latency counters are important in making sure that operations are happening in a
consistent manner. If these counters start to increase after a period of staying flat, it is probably an indication of a need
to add cluster capacity.

LiveSSTableCount can be monitored with a threshold to ensure that the number of SSTables for a given
ColumnFamily does not become too great.

Monitoring and Adjusting Cache Performance
Careful, incremental monitoring of cache changes is the best way to maximize benefit from Cassandra's built-in caching
features. Adjustments that increase cache hit rate are likely to use more system resources, such as memory. After
making changes to the cache configuration, it is best to monitor Cassandra as a whole for unintended impact on the
system.

For each node and each column family, you can view cache hit rate, cache size, and number of hits by expanding
org.apache.cassandra.db in the MBeans tab. For example:

Monitor new cache settings not only for hit rate, but also to make sure that memtables and heap size still have sufficient
memory for other operations. If you cannot maintain the desired key cache hit rate of 85% or better, add nodes to the
system and re-test until you can meet your caching requirements.

Row cache is disabled by default. Caching large rows can very quickly consume memory. Row cache rates should be
increased carefully in small increments. If row cache hit rates cannot be tuned to above 30%, it may make more sense
to leave row caching disabled.

Tuning Cassandra
Effective tuning depends not only on the types of operations your cluster performs most frequently, but also on the
shape of the data itself. For example, Cassandra's memtables have overhead for index structures on top of the actual
data they store. If the size of the values stored in the columns is small compared to the number of columns and rows
themselves (sometimes called skinny rows), this overhead can be substantial. Thus, the optimal tuning for this type of
data is quite different than the optimal tuning for a small numbers of columns with more data (fat rows).

Monitoring and Adjusting Cache Performance

91

Tuning the Cache
Cassandra's built-in key and row caches can provide very efficient data caching. Some Cassandra production
deployments have leveraged Cassandra's caching features to the point where dedicated caching tools such as
memcached could be completely replaced. Such deployments not only remove a redundant layer from the stack, but
they also achieve the fundamental efficiency of strengthening caching functionality in the lower tier where the data is
already being stored. Among other advantages, this means that caching never needs to be restarted in a completely
cold state.

Cache tuning should be done using small, incremental adjustments and then monitoring the effects of each change. See
Monitoring and Adjusting Cache Performance for more information about monitoring tuning changes to a column family
cache. With proper tuning, key cache hit rates of 85% or better are possible. Row caching, when feasible, can save the
system from performing any disk seeks at all when fetching a cached row. Whenever growth in the read load begins to
impact your cache hit rates, you can add capacity to quickly restore optimal levels of caching.

How Caching Works
If both row and key caches are configured, the row cache will return results whenever possible. In the case of a row
cache miss, the key cache may still provide a hit, assuming that it holds a larger number of keys than the row cache.

If a read operation hits the row cache, the entire requested row is returned without a disk seek. If a row is not in the row
cache, but is present in the key cache, the key cache is used to find the exact location of the row on disk in the SSTable.
If a row is not in the key cache, the read operation will populate the key cache after accessing the row on disk so
subsequent reads of the row can benefit. Each hit on a key cache can save one disk seek per SSTable.

Configuring the Column Family Key Cache
The key cache holds the location of row keys in memory on a per-column family basis. High levels of key caching are
recommended for most production scenarios. Turning this level up can optimize reads (after the cache warms) when
there is a large number of rows that are accessed frequently.

The caching of 200,000 row keys is enabled by default. This can be adjusted by setting keys_cached on a column
family. For example, using Cassandra CLI:

[default@demo] UPDATE COLUMN FAMILY users WITH keys_cached=205000;

Key cache performance can be monitored by using nodetool cfstats and examining the reported 'Key cache hit rate'.
See also Monitoring and Adjusting Cache Performance for more information about monitoring tuning changes to a
column family key cache.

Configuring the Column Family Row Cache
The row cache holds the entire contents of the row in memory. In cases where rows are large or frequently
modified/removed, row caching can actually be detrimental to performance. For this reason, row caching is disabled by
default.

Row cache should remain disabled for column families with large rows or high write:read ratios. In these situations, row
cache can very quickly consume a large amount of available memory. Note also that, when a row cache is operating
efficiently, it keeps Java garbage compaction processes very active.

Row caching is best for workloads that access a small subset of the overall rows, and within those rows, all or most of
the columns are returned. For this use case a row cache keeps the most accessed rows hot in memory, and can have
substantial performance benefits.

To enable row cache on a column family, set rows_cached to the desired number of rows. To enable off-heap row
caching, set row_cache_provider to SerializingCacheProvider. For example, using Cassandra CLI:

[default@demo] UPDATE COLUMN FAMILY users WITH rows_cached=100000
AND row_cache_provider='SerializingCacheProvider';

Tuning the Cache

92

Row cache performance can be monitored by using nodetool cfstats and examining the reported 'Row cache hit rate'.
See also Monitoring and Adjusting Cache Performance for more information about monitoring tuning changes to a
column family key cache.

Data Modeling Considerations for Cache Tuning
If your requirements permit it, a data model that logically separates heavily-read data into discrete column families can
help optimize caching. Column families with relatively small, narrow rows lend themselves to highly efficient row
caching. By the same token, it can make sense to separately store lower-demand data, or data with extremely long
rows, in a column family with minimal caching, if any.

Row caching in such contexts brings the most benefit when access patterns follow a normal (Gaussian) distribution.
When the keys most frequently requested follow such patterns, cache hit rates tend to increase. If you have particularly
hot rows in your data model, row caching can bring significant performance improvements.

Hardware and OS Considerations for Cache Tuning
Deploying a large number of Cassandra nodes under a relatively light load per node will maximize the fundamental
benefit from key and row caches.

A less obvious but very important consideration is the OS page cache. Modern operating systems maintain page caches
for frequently accessed data and are very efficient at keeping this data in memory. Even after a row is released in the
Java Virtual Machine memory, it can be kept in the OS page cache -- especially if the data is requested repeatedly, or
no other requested data replaces it.

If your requirements allow you to lower JVM heap size and memtable sizes to leave memory for OS page caching, then
do so. Ultimately, through gradual adjustments, you should achieve the desired balance between these three demands
on available memory: heap, memtables, and caching.

Estimating Cache Sizes
nodetool cfstats can be used to get the necessary information for estimating actual cache sizes.

To estimate the key cache size, multiply the reported 'Key cache size' for each column family by 10-12 to account for the
difference in reported Java heap usage and actual size. Then, add the results for all column families.

To estimate the row cache size, multiply the reported 'Row cache size' for each column family (which is the number of
rows in the cache) by the average size of each row. Then multiply that figure by 10-12 and sum the results over all
column families. As of Cassandra 1.0, the row cache for a column family is stored in native memory by default rather
than using the JVM heap (see row_cache_provider).

Tuning Write Performance (Memtables)
A memtable is a column family specific, in memory data structure that can be easily described as a write-back cache.
Memtables are flushed to disk, creating SSTables whenever one of the configurable thresholds has been exceeded.

Effectively tuning memtable thresholds depends on your data as much as your write load. Memtable thresholds are
configured per node using the cassandra.yaml properties: memtable_throughput_in_mb and
commitlog_total_space_in_mb.

You should increase memtable throughput if:

1. Your write load includes a high volume of updates on a smaller set of data

2. You have steady stream of continuous writes (this will lead to more efficient compaction)
Note that increasing memory allocations for memtables takes memory away from caching and other internal Cassandra
structures, so tune carefully and in small increments.

Tuning Java Heap Size

Data Modeling Considerations for Cache Tuning

93

Cassandra's default configuration opens the JVM with a heap size of 1/4 of the available system memory (or a minimum
1GB and maximum of 8GB for systems with a very low or very high amount of RAM). The vast majority of deployments
will not benefit from heap sizes larger than 8GB.

Many users new to Cassandra are tempted to turn this value up immediately to consume the majority of the underlying
system's RAM. Doing so in most cases is actually detrimental. The reason for this is that Cassandra, being essentially a
database, spends a lot of time interacting with the operating system's I/O infrastructure (via the JVM of course). Modern
operating systems maintain disk caches for frequently accessed data and are very good at keeping this data in memory.
Regardless of how much RAM your hardware has, you should keep the JVM heap size constrained by the following
formula and allow the operating system's file cache to do the rest:

(memtable_total_space_in_mb) + 1GB + (key_cache_size_estimate)

Note
As of Cassandra 1.0, column family row caches are stored in native memory by default (outside of the Java heap).
This results in both a smaller per-row memory footprint and reduced JVM heap requirements, which helps keep the
heap size manageable for good JVM garbage collection performance.

Tuning Java Garbage Collection
Cassandra's GCInspector class will log information about garbage collection whenever a garbage collection takes
longer than 200ms. If garbage collections are occurring frequently and are taking a moderate length of time to complete
(such as ConcurrentMarkSweep taking a few seconds), this is an indication that there is a lot of garbage collection
pressure on the JVM; this needs to be addressed by adding nodes, lowering cache sizes, or adjusting the JVM options
regarding garbage collection.

Tuning Compaction
During normal operations, numerous SSTables may be created on disk for a given column family. Compaction is the
process of merging multiple SSTables into one consolidated SSTable. Additionally, the compaction process merges
keys, combines columns, discards tombstones and creates a new index in the merged SSTable.

Choosing a Column Family Compaction Strategy
Tuning compaction involves first choosing the right compaction strategy for each column family based on its access
patterns. As of Cassandra 1.0, there are two choices of compaction strategies:

• SizeTieredCompactionStrategy - This is the default compaction strategy for a column family, and prior to
Cassandra 1.0, the only compaction strategy available. This strategy is best suited for column families with
insert-mostly workloads that are not read as frequently. This strategy also requires closer monitoring of disk
utilization because (as a worst case scenario) a column family can temporarily double in size while a compaction
is in progress.

• LeveledCompactionStrategy - This is a new compaction strategy introduced in Cassandra 1.0. This compaction
strategy is based on (but not an exact implementation of) Google's leveldb. This strategy is best suited for column
families with read-heavy workloads that also have frequent updates to existing rows. When using this strategy,
you want to keep an eye on read latency performance for the column family. If a node cannot keep up with the
write workload and pending compactions are piling up, then read performance will degrade for a longer period of
time.

Setting the Compaction Strategy on a Column Family
You can set the compaction strategy on a column family by setting the compaction_strategy attribute. For example, to
update a column family to use the leveled compaction strategy using Cassandra CLI:

[default@demo] UPDATE COLUMN FAMILY users WITH compaction_strategy=LeveledCompactionStrategy
AND compaction_strategy_options=[{sstable_size_in_mb: 10}];

Tuning Java Garbage Collection

94

http://leveldb.googlecode.com/svn/trunk/doc/impl.html

Tuning Options for Size-Tiered Compaction
For column families that use size-tiered compaction (the default), the frequency and scope of minor compactions is
controlled by the following column family attributes:

• min_compaction_threshold

• max_compaction_threshold
These parameters set thresholds for the number of similar-sized SSTables that can accumulate before a minor
compaction is triggered. With the default values, a minor compaction may begin any time after four SSTables are
created on disk for a column family, and must begin before 32 SSTables accumulate.

You can tune these values per column family. For example, using Cassandra CLI:

[default@demo] UPDATE COLUMN FAMILY users WITH max_compaction_threshold = 20;

Note
Administrators can also initiate a major compaction through nodetool compact, which merges all SSTables into one.
Though major compaction can free disk space used by accumulated SSTables, during runtime it temporarily doubles
disk space usage and is I/O and CPU intensive. Also, once you run a major compaction, automatic minor compactions
are no longer triggered frequently forcing you to manually run major compactions on a routine basis. So while read
performance will be good immediately following a major compaction, it will continually degrade until the next major
compaction is manually invoked. For this reason, major compaction is NOT recommended by DataStax.

Managing a Cassandra Cluster
This section discusses routine management and maintenance tasks.

Running Routine Node Repair
The nodetool repair command repairs inconsistencies across all of the replicas for a given range of data. Repair should
be run at regular intervals during normal operations, as well as during node recovery scenarios (bringing a node back
into the cluster after a failure).

Unless Cassandra applications perform no deletes at all, production clusters must schedule repair to run periodically on
all nodes. The hard requirement for repair frequency is the value used for gc_grace_seconds -- make sure you run a
repair operation at least once on each node within this time period. Following this important guideline can ensure that
deletes are properly handled in the cluster.

Note
Repair is an expensive operation in both disk and CPU consumption. Use caution when running node repair on more
than one node at a time, and schedule regular repair operations for low-usage hours.

In systems that seldom delete or overwrite data, it is possible to raise the value of gc_grace_seconds at a minimal cost
in extra disk space used. This allows wider intervals for scheduling repair operations with the nodetool utility.

Adding Capacity to an Existing Cluster
Cassandra allows you to add capacity to a cluster by introducing new nodes to the cluster in stages. When a new node
joins an existing cluster, it needs to know:

• Its position in the ring and the range of data it is responsible for. This is determined by the settings of initial_token
and auto_bootstrap when the node first starts up.

• The nodes it should contact to learn about the cluster and establish the gossip process. This is determined by the
setting of seeds when the node first starts up.

Tuning Options for Size-Tiered Compaction

95

• The name of the cluster it is joining and how the node should be addressed within the cluster. See Node and
Cluster Initialization Properties in cassandra.yaml.

• Any other non-default adjustments made to cassandra.yaml on your existing cluster should also be made on the
new node as well before it is started.

Calculating Tokens For the New Nodes
When you add a node to a cluster, it needs to know its position in the ring. There are a few different approaches for
calculating tokens for new nodes:

• Add capacity by doubling the cluster size. Adding capacity by doubling (or tripling or quadrupling) the number
of nodes is operationally less complicated when assigning tokens. Existing nodes can keep their existing token
assignments, and new nodes are assigned tokens that bisect (or trisect) the existing token ranges. For example,
when you generate tokens for 6 nodes, three of the generated token values will be the same as if you generated
for 3 nodes. You just need to determine the token values that are already in use, and assign the newly calculated
token values to the newly added nodes.

• Recalculate new tokens for all nodes and move nodes around the ring. If doubling the cluster size is not
feasible, and you need to increase capacity by a non-uniform number of nodes, you will have to recalculate tokens
for the entire cluster. Existing nodes will have to have their new tokens assigned using nodetool move. After all
nodes have been restarted with their new token assignments, run a nodetool cleanup in order to remove unused
keys on all nodes. These operations are resource intensive and should be planned for low-usage times.

• Add one node at a time and automatically assign a token with auto bootstrap. Use DataStax OpsCenter
Enterprise Edition to rebalance your cluster. When a node is started with auto_bootstrap set to true and
initial_token left empty, Cassandra will split the token range of the heaviest loaded node and place the new node
into the ring at that token position. Note that this approach will probably not result in a perfectly balanced ring, but
it will alleviate hot spots. For DataStax Enterprise customers, you can quickly add nodes to the cluster using this
approach and then use the rebalance feature of DataStax OpsCenter to automatically calculate balanced token
ranges, move tokens accordingly, and then perform cleanup on the nodes after the moves are complete.

Adding Nodes to a Cluster

1. Install Cassandra on the new node, but do not start it.

2. Calculate tokens based on the expansion strategy you are using. If you want a new node to automatically pick a
token range during auto bootstrap, you can skip this step.

3. In the Node and Cluster Configuration (cassandra.yaml) file, set auto_bootstrap to true. Set the other Node and
Cluster Initialization Properties accordingly. Set initial_token according to your token calculations (or leave it unset
to auto bootstrap the node into the ring by splitting the token range of the heaviest loaded node).

4. Start Cassandra on the new node. Allow a few minutes between node initializations. You can monitor the startup
and data streaming process to its completion using nodetool netstats.

5. After the new nodes are fully bootstrapped, move the tokens on the existing nodes that require a new token
assignment, one node at a time. First edit initial_token in the Node and Cluster Configuration (cassandra.yaml)
file. Then run nodetool move <new_token> on the existing nodes that require a new token assignment, one
node at a time.

6. After all nodes have their new tokens assigned, run nodetool cleanup on each of the existing nodes to remove the
keys no longer belonging to those nodes. Wait for cleanup to complete on one node before doing the next.
Cleanup may be safely postponed for low-usage hours.

Note
DataStax Enterprise customers can use DataStax OpsCenter Enterprise Edition to automatically rebalance their
cluster after adding new nodes. OpsCenter's rebalance feature will automatically calculate balanced token ranges and
perform steps 5 and 6 on each node in the cluster in the correct order.

Calculating Tokens For the New Nodes

96

Changing the Replication Factor
Increasing the replication factor increases the total number of copies of keyspace data stored in a Cassandra cluster.

1. Update each keyspace in the cluster and change its replication strategy options. For example, to update the
number of replicas in Cassandra CLI when using SimpleStrategy replica placement strategy:

[default@unknown] UPDATE KEYSPACE demo
WITH strategy_options = [{replication_factor:3}];

Or if using NetworkTopologyStrategy:

[default@unknown] UPDATE KEYSPACE demo
WITH strategy_options = [{datacenter1:6,datacenter2:6}];

2. On each node in the cluster, run nodetool repair for each keyspace that was updated. Wait until repair completes
on a node before moving to the next node.

Replacing a Dead Node
To replace a node that has died (due to hardware failure, for example), you can bring up a new node in its place by
starting the new node with the -Dcassandra.replace_token=<token> parameter and having the new node
assume the token position of the node that has died. To replace a dead node in this way:

• the token that is used has to be from a node that is down - trying to replace a node using a token from a live
node will result in an exception.

• the token that is used must already be part of the ring.

• the new node that is joining the cluster cannot have any preexisting Cassandra data on it (empty the data
directory if you want to force a node replacement).

To replace a dead node:

1. Confirm the dead node using the nodetool ring command on any live node in the cluster (note the Down status
and the token value of the dead node). For example:

2. Prepare the replacement node by installing Cassandra and correctly configuring its cassandra.yaml file.

3. Start Cassandra on the new node using the startup property -Dcassandra.replace_token=<token> and
pass in the same token that was used by the dead node. For example:

$ cassandra -Dcassandra.replace_token=28356863910078205288614550619314017621

4. The new node will start in a hibernate state and begin to bootstrap data from its associated replica nodes. During
this time, the node will not accept writes and is seen as down to other nodes in the cluster. When the bootstrap is
complete, the node will be marked as up and any missed writes that occurred during bootstrap will be replayed
using hinted handoff.

5. Once the new node is up, it is strongly recommended to run nodetool repair on each keyspace to ensure the node
is fully consistent. For example:

$ nodetool repair -h 10.46.123.12 keyspace_name -pr

Changing the Replication Factor

97

Backing Up and Restoring Data
Cassandra backs up data by taking a snapshot of the SSTable data files stored in the data directory. Snapshots are
taken per keyspace, and can be taken while the system is online. However, nodes must be taken offline in order to
restore a snapshot.

Using a parallel ssh tool (such as pssh), you can snapshot an entire cluster. This provides an eventually consistent
backup. Although no one node is guaranteed to be consistent with its replica nodes at the time a snapshot is taken, a
restored snapshot can resume consistency using Cassandra's built-in consistency mechanisms.

After a system-wide snapshot has been taken, you can enable incremental backups on each node (it is disabled by
default) to backup data that has changed since the last snapshot was taken. Each time an SSTable is flushed, a hard
link is copied into a /backups subdirectory of the data directory.

Taking a Snapshot
Snapshots are taken per node using the :ref:` nodetool snapshot <nodetool-snapshot>` command. If you want to take a
global snapshot (capture all nodes in the cluster at the same time), run the nodetool snapshot command using a
parallel ssh utility, such as pssh.

The snapshot command first flushes all in-memory writes to disk, then makes a copy of all on-disk data files (SSTable
files) for each keyspace. The snapshot files are created in the Cassandra data directory location
(/var/lib/cassandra/data by default) in the snapshots directory of each keyspace.

You must have enough disk space on the node in order to accommodate making a full copy of your data files. After the
snapshot is complete, you can move the backup files off to another location if needed, or you can leave them in place.

To create a snapshot of a node
Run the nodetool snapshot command, specifying the hostname, JMX port and snapshot name. For example:

$ nodetool -h localhost -p 7199 snapshot 12022011

The snapshot will be created in
<data_directory_location>/<keyspace_name>/snapshots/<snapshot_name>. Each snapshot folder
contains numerous .db files which contain the data at the time of the snapshot.

Clearing Snapshot Files
When you take a snapshot, previous snapshot files are not automatically deleted. To maintain the snapshot directories,
old snapshots that are no longer needed should be removed.

The nodetool clearsnapshot command will remove all existing snapshot files from the snapshot directory of each
keyspace. You may want to make it part of your back-up process to clear old snapshots before taking a new one.

If you want to clear snapshots on all nodes at once, run the nodetool clearsnapshot command using a parallel
ssh utility, such as pssh.

To clear all snapshots for a node
Run the nodetool clearsnapshot command. For example:

$ nodetool -h localhost -p 7199 clearsnapshot

Enabling Incremental Backups
When incremental backups are enabled (they are disabled by default), Cassandra hard-links each flushed SSTable to a
backups directory under the keyspace data directory. This allows you to store backups offsite without transferring entire
snapshots. Also, incremental backups combine with snapshots to provide a dependable, up-to-date backup mechanism.

To enable incremental backups, edit the cassandra.yaml file on each node in the cluster and change the value of
incremental_backups to true.

Backing Up and Restoring Data

98

As with snapshots, Cassandra does not automatically clear incremental backup files. DataStax recommends setting up
a process to clear incremental backup hard-links each time a new snapshot is created.

Restoring from a Snapshot
To restore a keyspace from a snapshot, you will need all of the snapshot files for the keyspace, in addition to any
incremental backup files created after the snapshot was taken (if using incremental backups).

If you are restoring just a single node, you must shutdown the node in order to restore. If you are restoring an entire
cluster, you must shutdown all nodes, restore the snapshot data, and then start all nodes again.

Note
Restoring from snapshots and incremental backups will temporarily cause intensive CPU and I/O activity on the node
being restored.

To restore a node from a snapshot and incremental backups:

1. Shut down the node to be restored.

2. Clear all files under the commitlog directory, (in /var/lib/cassandra/commitlog by default).

3. Clear all *.db files under $DATA_DIRECTORY/<keyspace_name>, but DO NOT delete the /snapshots and
/backups subdirectories.

4. Locate the most recent snapshot folder under
$DATA_DIRECTORY/<keyspace_name>/snapshots/<snapshot_name>, and copy its contents into
$DATA_DIRECTORY/<keyspace_name>.

5. If using incremental backups as well, copy all contents of $DATA_DIRECTORY/<keyspace_name>/backups
into $DATA_DIRECTORY/<keyspace_name>.

6. Restart the node, keeping in mind that a temporary burst of I/O activity will consume a large amount of CPU
resources.

References

CQL Language Reference
Cassandra Query Language (CQL) is based on SQL (Structured Query Language), the standard for relational database
manipulation. Although CQL has many similarities to SQL, there are some fundamental differences. For example, it is
adapted to the Cassandra data model and architecture so there is still no allowance for SQL-like operations such as
JOINs or range queries over rows on clusters that use the random partitioner.

CQL Lexical Structure
CQL input consists of a sequence of statements. A statement is composed of a sequence of tokens, terminated by a
semicolon (;). Which tokens are valid depends on the syntax of the particular CQL command.

A token can be a keyword, an identifier, a constant (or literal) value, or a special character symbol. Tokens are normally
separated by whitespace (space, tab, newline).

For example, the following is (syntactically) valid CQL input:

SELECT * FROM MyColumnFamily;

UPDATE MyColumnFamily SET 'SomeColumn' = 'SomeValue' WHERE KEY = B70DE1D0-9908-4AE3-BE34-5573E5B09F14;

This is a sequence of two CQL statements. This example shows one statement per line, although a statement can
usefully be split across lines as well.

Restoring from a Snapshot

99

CQL Identifiers and Keywords
Tokens such as SELECT, UPDATE, or FROM are examples of keywords, that is, words that have a fixed meaning in a
CQL statement. The token MyColumnFamily is an example of an identifier; a string that identifies the names of
Cassandra objects such as keyspaces and column families.

CQL keywords are not case-sensitive, although they are typically shown in all uppercase in examples for readability.
The keyword SELECT and select are equivalent.

An identifier must begin with a letter followed by any sequence of letters, digits, or the underscore (_). Identifiers are
case-sensitive. The identifier MyColumnFamily and mycolumnfamily are not equivalent.

CQL Constants
A constant, also known as a literal or a scalar value, represents a specific data value. The format of a constant depends
on the data type of the value it represents.

There are four types of implicitly-typed constants in CQL: string values, integer and float numeric values, and universally
unique identifier (UUID) values. Constants can also be explicitly typed.

• string - A string constant is an arbitrary sequence of characters bounded by single quotes ('). To include a
single-quote character within a string constant, use two adjacent single quotes (for example, 'Joe''s Diner'). Note
that this is not the same as a double-quote character (").

• integer - An integer constant is one or more digits (0 through 9) preceded by an optional minus sign (-). Note that
there is no optional plus sign (+). There is also no provision for exponential notation such as 5e2.

• float - A float constant is specified as <digits>.<digits>, where <digits> is one or more digits ((0 through
9). Note that there must be digits both before and after the decimal point (for example 0.12 instead of .12). There
is also no provision for exponential notation such as 1.925e-3.

• uuid - A universally unique identifier can be expressed in the canonical UUID form: 32 hex digits (0-9 or a-f, case
insensitive), separated by dashes (-) after the 8th, 12th, 16th, and 20th digits. For example:
01234567-0123-0123-0123-0123456789ab

CQL Comments
Comments can be used to document CQL statements in your application code. Single line comments can begin with a
double dash (--) or a double slash (//) and extend to the end of the line. Multi-line comments can be enclosed in /*
and */ characters.

CQL Consistency Levels
In Cassandra, consistency refers to how up-to-date and synchronized a row of data is on all of its replica nodes. For any
given read or write operation, the client request specifies a consistency level, which determines how many replica nodes
must successfully respond to the request.

In CQL, the default consistency level is ONE. You can set the consistency level for any read (SELECT) or write
(INSERT, UPDATE, DELETE, BATCH) operation using the USING CONSISTENCY keywords. For example:

SELECT * FROM users WHERE state='TX' USING CONSISTENCY QUORUM;

The following consistency levels can be specified. See tunable consistency for more information about the different
consistency levels.

• ANY (applicable to writes only)

• ONE

• QUORUM

• LOCAL_QUOROM (applicable to multi-data center clusters only)

• EACH_QUOROM (applicable to multi-data center clusters only)

CQL Identifiers and Keywords

100

CQL Data Types
Cassandra has a schema-optional data model. You can define data types when you create your column family schemas
(which is recommended), but Cassandra does not require it. Column names, column values, and row key values can be
typed in Cassandra. Internally, Cassandra stores column names and values as hex byte arrays (blob).

CQL comes with the following built-in data types, which can be used for column names and column/row key values. One
exception is counter, which is only allowed as a column value (not allowed for row key values or column names).

CQL Type Description
ascii US-ASCII character string

bigint 64-bit signed long

blob Arbitrary hexadecimal bytes (no validation)

boolean true or false

counter Distributed counter value (64-bit long)

decimal Variable-precision decimal

double 64-bit IEEE-754 floating point

float 32-bit IEEE-754 floating point

int 32-bit signed integer

text UTF-8 encoded string

timestamp Date plus time, encoded as 8 bytes since epoch

uuid Type 1 or type 4 UUID

varchar UTF-8 encoded string

varint Arbitrary-precision integer

Working with Dates and Times
Values serialized with the timestamp type are encoded as 64-bit signed integers representing a number of
milliseconds since the standard base time known as the epoch: January 1 1970 at 00:00:00 GMT.

Timestamp types can be input in CQL as simple long integers, giving the number of milliseconds since the epoch.

Timestamp types can also be input as string literals in any of the following ISO 8601 formats. For example, for the date
and time of Jan 2, 2003, at 04:05:00 AM, GMT:

2011-02-03 04:05+0000
2011-02-03 04:05:00+0000
2011-02-03T04:05+0000
2011-02-03T04:05:00+0000

The +0000 is the RFC 822 4-digit time zone specification for GMT. US Pacific Standard Time is -0800. The time zone
may be omitted. For example:

2011-02-03 04:05
2011-02-03 04:05:00
2011-02-03T04:05
2011-02-03T04:05:00

If no time zone is specified, the time zone of the Cassandra coordinator node handing the write request will be used. For
accuracy, DataStax recommends specifying the time zone rather than relying on the time zone configured on the
Cassandra nodes.

If you only want to capture date values, the time of day can also be omitted. For example:

CQL Data Types

101

2011-02-03
2011-02-03+0000

In this case, the time of day will default to 00:00:00, in the specified or default time zone.

CQL Storage Parameters
Certain CQL commands allow a WITH clause for setting certain storage parameters on a keyspace or column family.
Note that CQL does not currently offer support for defining all of the possible storage parameters, just a subset.

CQL Keyspace Storage Parameters
CQL supports setting the following keyspace storage parameters.

CQL Parameter Name Description
strategy_class The name of the replication strategy: SimpleStrategy or

NetworkTopologyStrategy

strategy_options Replication strategy option names are appended to the strategy_options
keyword using a colon (:). For example: strategy_options:DC1=1 or
strategy_options:replication_factor=3

CQL Column Family Storage Parameters
CQL supports setting the following column family storage parameters.

CQL Parameter Name CQLSH Default Value
comparator text

comment n/a

row_cache_provider SerializingCacheProvider if JNA is present, otherwise
ConcurrentHashMapCacheProvider

row_cache_size 0

key_cache_size 200000

read_repair_chance 1.0

gc_grace_seconds 864000

default_validation text

min_compaction_threshold 4

max_compaction_threshold 32

row_cache_save_period_in_seconds 0

key_cache_save_period_in_seconds 14400

replicate_on_write false

CQL Commands
The CQL language is comprised on the following commands:

ALTER COLUMNFAMILY
Manipulates the column metadata of a column family.

CQL Storage Parameters

102

Synopsis

ALTER COLUMNFAMILY <name>
 ALTER <column_name> TYPE <data_type>
 | ADD <column_name> <data_type>
 | DROP <column_name> ;

Description
ALTER COLUMNFAMILY is used to manipulate the column metadata of a static column family. You can also use the
alias ALTER TABLE. Using the alias, you can add new columns, drop existing columns, or change the data storage type
of existing columns. No results are returned.

See CQL Data Types for the available data types.

Parameters
<name>

The name of the column family to be altered.

ALTER <column_name> TYPE <data_type>
Changes the data type of an existing column. The named column must exist in the column family schema definition
and have a type defined, but the column does not have to exist in any rows currently stored in the column family.
Note that when you change the data type of a column, existing data is not changed or validated on disk. If existing
data is not compatible with the defined type, then this will cause your CQL driver or other client interfaces to return
errors when accessing the data. For example if you changed a column type to int, but the existing stored data had
non-numeric characters in it, your client requests of that data would report errors.

ADD <column_name> <data_type>
Adds a typed column to the column metadata of a column family schema definition. The column must not already
have a type in the column family metadata.

DROP <column_name> <data_type>
Removes a column from the column family metadata. Note that this does not remove the column from current rows.
It just removes the metadata saying that the values stored under that column name are expected to be a certain
type.

Examples

ALTER COLUMNFAMILY users ALTER email TYPE varchar;

ALTER COLUMNFAMILY users ADD gender varchar;

ALTER COLUMNFAMILY users DROP gender;

BATCH
Sets a global consistency level, client-supplied timestamp, and optional time-to-live (TTL) for all columns written by the
statements in the batch.

Synopsis

BEGIN BATCH

 [USING <write_option> [AND <write_option> [...]]];

Synopsis

103

 <dml_statement>
 <dml_statement>
 [...]

APPLY BATCH;

where <write_option> is:

USING CONSISTENCY <consistency_level>
TTL <seconds>
TIMESTAMP <integer>

Description
A BATCH statement allows you combine multiple data modification statements into a single logical operation. All
columns modified by the batch statement will have the same global timestamp. Only INSERT, UPDATE, and DELETE
statements are allowed within a BATCH statement. Individual statements within a BATCH should be specified one
statement per line without an ending semi-colon.

All statements within the batch are executed using the same consistency level.

BATCH should not be considered as an analogue for SQL ACID transactions. BATCH does not provide transaction
isolation. Column updates are only considered atomic within a given record (row).

Parameters
BEGIN BATCH

Command to initiate a batch. All statements in the batch will be executed with the same timestamp and consistency
level (and optional time-to-live).

USING CONSISTENCY <consistency_level>
Optional clause to specify the consistency level. If omitted, the default consistency level is ONE. The following
consistency levels can be specified. See tunable consistency for more information about the different consistency
levels.

• ANY (applicable to writes only)

• ONE

• QUORUM

• LOCAL_QUOROM (applicable to multi-data center clusters only)

• EACH_QUOROM (applicable to multi-data center clusters only)
TTL <seconds>

Optional clause to specify a time-to-live (TTL) period for an inserted or updated column. TTL columns are
automatically marked as deleted (with a tombstone) after the requested amount of time has expired.

TIMESTAMP <integer>
Defines an optional timestamp to use for the written columns. The timestamp must be in the form of an integer.

<dml_statement>
An INSERT, UPDATE, or DELETE statement to be executed. A statement should be contained on a single line and
without an ending semi-colon.

APPLY BATCH
Closes the batch statement. All statements in the batch are submitted for execution as a unit.

Example

Description

104

BEGIN BATCH USING CONSISTENCY QUORUM AND TTL 8640000
 INSERT INTO users (KEY, password, name) VALUES ('user2', 'ch@ngem3b', 'second user')
 UPDATE users SET password = 'ps22dhds' WHERE KEY = 'user2'
 INSERT INTO users (KEY, password) VALUES ('user3', 'ch@ngem3c')
 DELETE name FROM users WHERE key = 'user2'
 INSERT INTO users (KEY, password, name) VALUES ('user4', 'ch@ngem3c', 'Andrew')
APPLY BATCH;

CREATE COLUMNFAMILY
Define a new column family.

Synopsis

CREATE COLUMNFAMILY <cf_name> (
 <key_column_name> <data_type> PRIMARY KEY
 [, <column_name> <data_type> [, ...]])
 [WITH <storage_parameter> = <value>
 [AND <storage_parameter> = <value> [...]]];

Description
CREATE COLUMNFAMILY creates a new column family under the current keyspace. You can also use the alias CREATE
TABLE.

The only schema information that must be defined for a column family is the primary key (or row key) and its associated
data type. Other column metadata can be defined as needed.

See CQL Data Types for the available data types.

See CQL Column Family Storage Parameters for the available storage parameters you can define on a column family
when using CQL.

Parameters
<cf_name>

Defines the name of the column family. Valid column family names are strings of alpha-numeric characters and
underscores, and must begin with a letter.

<key_column_name> <data_type> PRIMARY KEY
Columns are defined in a comma-separated list enclosed in parenthesis. The first column listed in the column
definition is always the row key (or primary key of the column family), and is required. Any other column definitions
are optional.

Row keys can be defined using the generic KEY keyword, or can be given a column name to use as the alias for
the row key. The row key data type must be compatible with the partitioner configured for your Cassandra cluster.
For example, OrderPreservingPartitioner requires UTF-8 row keys.

<column_name> <data_type>
Defines column metadata for static column families (when you know what the column names will be ahead of time).

WITH <storage_parameter> = <value>
Defines certain storage parameters on a column family. See CQL Column Family Storage Parameters for the
available storage parameters you can define on a column family when using CQL.

For dynamic column families (where you do not know the column names ahead of time), it is best practice to still
define a default data type for column names (using WITH comparator=<data_type>) and values (using WITH
default_validation=<data_type>).

CREATE COLUMNFAMILY

105

Examples
Dynamic column family definition:

CREATE COLUMNFAMILY user_events (user text PRIMARY KEY)
 WITH comparator=timestamp AND default_validation=int;

Static column family definition:

CREATE COLUMNFAMILY users (
 KEY uuid PRIMARY KEY,
 username text,
 email text)
 WITH comment='user information'
 AND read_repair_chance = 1.0;

CREATE INDEX
Define a new secondary index on a single, typed column of a column family.

Synopsis

CREATE INDEX [<index_name>]
 ON <cf_name> (<column_name>);

Description
CREATE INDEX creates a secondary index on the named column family, for the named column. A secondary index can
only be created on a single, typed column. The indexed column must have a data type defined in the column metadata
of the column family definition, although it is not required that the column exist in any currently stored rows.

Parameters
<index_name>

Optionally defines a name for the secondary index. Valid index names are strings of alpha-numeric characters and
underscores, and must begin with a letter.

ON <cf_name> (<column_name>)
Specifies the column family and column name on which to create the secondary index. The named column must
have a data type defined in the column family schema definition.

Examples
Define a static column family and then create a secondary index on two of its named columns:

CREATE COLUMNFAMILY users (
 KEY uuid PRIMARY KEY,
 firstname text,
 lastname text,
 email text,
 address text,
 zip int,
 state text);

CREATE INDEX user_state
 ON users (state);

Examples

106

CREATE INDEX ON users (zip);

CREATE KEYSPACE
Define a new keyspace and its replica placement strategy.

Synopsis

CREATE KEYSPACE <ks_name>
 WITH strategy_class = <value>
 [AND strategy_options:<option> = <value> [...]];

Description
CREATE KEYSPACE creates a new keyspace and sets the replica placement strategy (and associated replication
options) for the keyspace.

See Choosing Keyspace Replication Options for guidance on how to best configure replication strategy and strategy
options for your cluster.

Parameters
<ks_name>

Defines the name of the keyspace. Valid keyspace names are strings of alpha-numeric characters and
underscores, and must begin with a letter.

WITH strategy_class=<value>
Required. Sets the replica placement strategy to use for this keyspace. The most common choices are
NetworkTopologyStrategy or SimpleStrategy.

AND strategy_options:<option>=<value>
Certain additional options must be defined depending on the replication strategy chosen.

For SimpleStrategy, you must specify the replication factor in the format of
strategy_options:replication_factor=<number>.

For NetworkTopologyStrategy, you must specify the number of replicas per data center in the format of
strategy_options:<datacenter_name>=<number>. Note that what you specify for <datacenter_name>
depends on the cluster-configured snitch you are using. There is a correlation between the data center name
defined in the keyspace strategy_options and the data center name as recognized by the snitch you are
using. The nodetool ring command prints out data center names and rack locations of your nodes if you are not
sure what they are.

Examples
Define a new keyspace using the simple replication strategy:

CREATE KEYSPACE MyKeyspace WITH strategy_class = 'SimpleStrategy'
 AND strategy_options:replication_factor = 1;

Define a new keyspace using a network-aware replication strategy and snitch. This example assumes you are using the
PropertyFileSnitch and your data centers are named DC1 and DC2 in the cassandra-topology.properties file:

CREATE KEYSPACE MyKeyspace WITH strategy_class = 'NetworkTopologyStrategy'
 AND strategy_options:DC1 = 3 AND strategy_options:DC2 = 3;

DELETE

CREATE KEYSPACE

107

Removes one or more columns from the named row(s).

Synopsis

DELETE [<column_name> [, ...]]
 FROM <column_family>
[USING CONSISTENCY <consistency_level> [AND TIMESTAMP <integer>]]
WHERE <row_specification>;

where <row_specification> is:

KEY | <key_alias> = <key_value>
KEY | <key_alias> IN (<key_value> [,...])

Description
A DELETE statement removes one or more columns from one or more rows in the named column family. Rows are
identified using the KEY keyword or the key alias defined on the column family. If no column names are given, the entire
row is deleted.

When a column is deleted, it is not removed from disk immediately. The deleted column is marked with a tombstone and
then removed after the configured grace period has expired. See About Deletes for more information about how
Cassandra handles deleted columns and rows.

Parameters
<column_name>

The name of one or more columns to be deleted. If no column names are given, then all columns in the identified
rows will be deleted, essentially deleting the entire row.

FROM <column_family>
The name of the column family from which to delete the identified columns or rows.

USING CONSISTENCY <consistency_level>
Optional clause to specify the consistency level. If omitted, the default consistency level is ONE. The following
consistency levels can be specified. See tunable consistency for more information about the different consistency
levels.

• ANY (applicable to writes only)

• ONE

• QUORUM

• LOCAL_QUOROM (applicable to multi-data center clusters only)

• EACH_QUOROM (applicable to multi-data center clusters only)
TIMESTAMP <integer>

Defines an optional timestamp to use for the new tombstone record. The timestamp must be in the form of an
integer.

WHERE <row_specification>
The WHERE clause identifies one or more rows in the column family from which to delete columns. Rows are
identified using the KEY keyword or the key alias defined on the column family, and then supplying one or more
row key values.

Example

Synopsis

108

DELETE email, phone
 FROM users
 USING CONSISTENCY QUORUM AND TIMESTAMP 1318452291034
 WHERE user_name = 'jsmith';

DELETE FROM users WHERE KEY IN ('dhutchinson', 'jsmith');

DROP COLUMNFAMILY
Drops the named column family.

Synopsis

DROP COLUMNFAMILY <name>;

Description
A DROP COLUMNFAMILY statement results in the immediate, irreversible removal of a column family, including all data
contained in the column family. You can also use the alias DROP TABLE.

Parameters
<name>

The name of the column family to be dropped.

Example

DROP COLUMNFAMILY users;

DROP INDEX
Drops the named secondary.

Synopsis

DROP INDEX <name>;

Description
A DROP INDEX statement removes an existing secondary index.

Parameters
<name>

The name of the secondary index to be dropped. If the index was not given a name during creation, the index name
is <columnfamily_name>_<column_name>_idx.

Example

DROP INDEX user_state;

DROP INDEX users_zip_idx;

DROP KEYSPACE

DROP COLUMNFAMILY

109

Drops the named keyspace.

Synopsis

DROP KEYSPACE <name>;

Description
A DROP KEYSPACE statement results in the immediate, irreversible removal of a keyspace, including all column
families and data contained in the keyspace.

Parameters
<name>

The name of the keyspace to be dropped.

Example

DROP KEYSPACE Demo;

INSERT
Inserts or updates one or more columns in the identified row of a column family.

Synopsis

INSERT INTO <column_family> (<key_name>, <column_name> [, ...])
 VALUES (<key_value>, <column_value> [, ...])
 [USING <write_option> [AND <write_option> [...]]];

where <write_option> is:

USING CONSISTENCY <consistency_level>
TTL <seconds>
TIMESTAMP <integer>

Description
An INSERT is used to write one or more columns to the identified row in a Cassandra column family. No results are
returned. Unlike in SQL, the semantics of INSERT and UPDATE are identical. In either case a row/column record is
created if does not exist, or updated if it does exist.

The first column name in the INSERT list must be that of the row key (either the KEY keyword or the row key alias
defined on the column family). The first column value in the VALUES list is the row key value for which you want to
insert or update columns. After the row key, there must be at least one other column name specified. In Cassandra, a
row with only a key and no associated columns is not considered to exist.

Parameters
<column_family> (<key_name>, <column_name> [, ...])

The name of the column family to insert or update followed by a comma-separated list of column names enclosed in
parenthesis. The first name in the list must be that of the row key (either the KEY keyword or the row key alias
defined on the column family) followed by at least one other column name.

VALUES (<key_value>, <column_value> [, ...])

Synopsis

110

Supplies a comma-separated list of column values enclosed in parenthesis. The first column value is always the
row key value for which you want to insert columns. Column values should be listed in the same order as the
column names supplied in the INSERT list. If a row or column does not exist, it will be inserted. If it does exist, it will
be updated.

USING CONSISTENCY <consistency_level>
Optional clause to specify the consistency level. If omitted, the default consistency level is ONE. The following
consistency levels can be specified. See tunable consistency for more information about the different consistency
levels.

• ANY (applicable to writes only)

• ONE

• QUORUM

• LOCAL_QUOROM (applicable to multi-data center clusters only)

• EACH_QUOROM (applicable to multi-data center clusters only)
TTL <seconds>

Optional clause to specify a time-to-live (TTL) period for an inserted or updated column. TTL columns are
automatically marked as deleted (with a tombstone) after the requested amount of time has expired.

TIMESTAMP <integer>
Defines an optional timestamp to use for the written columns. The timestamp must be in the form of an integer.

Example

INSERT INTO users (KEY, user_name)
 VALUES ('cfd66ccc-d857-4e90-b1e5-df98a3d40cd6', 'jbellis')
 USING CONSISTENCY LOCAL_QUORUM AND TTL 86400;

SELECT
Returns the requested rows and columns from a Cassandra column family.

Synopsis

SELECT <column_specification>
 FROM [<keyspace>.]<column_family>
[USING CONSISTENCY <consistency_level>]
[WHERE <row_specification> [AND <row_specification> [...]]
[LIMIT <integer>]

where <column_specification> is:

<column_name> [, ...]
| [FIRST <integer>] [REVERSED] { <start_of_range> .. <end_of_range> | * }
| COUNT(*)

and where <row_specification> is:

KEY | <key_alias> { = | < | > | <= | >= } <key_value>
KEY | <key_alias> IN (<key_value> [,...])

Description

Example

111

A SELECT is used to read one or more rows from a Cassandra column family. It returns a result-set of rows, where
each row consists of a row key and a collection of columns corresponding to the query.

Unlike a SQL SELECT, there is no guarantee that the columns specified in the query will be contained in the result set.
Cassandra has a schema-optional data model, so it will not give an error if you request columns that do not exist.

Parameters
The SELECT List

The SELECT list determines the columns that will appear in the results. It takes a comma-separated list of column
names, a range of column names, or COUNT(*). Column names in Cassandra can be specified as string literals or
integers, in addition to named identifiers.

To specify a range of columns, specify the start and end column names separated by two periods (..). The set of
columns returned for a range is start and end inclusive. The asterisk (*) may also be used as a range representing
all columns.

When requesting a range of columns, it may be useful to limit the number of columns that can be returned from
each row using the FIRST clause. This sets an upper limit on the number of columns returned per row (the default
is 10,000 if not specified).

The REVERSED keyword causes the columns to be returned in reversed sorted order. If using a FIRST clause, the
columns at the end of the range will be selected instead of the ones at the beginning of the range.

A SELECT list may also be COUNT(*). In this case, the result will be the number of rows which matched the query.

The FROM Clause
The FROM clause specifies the column family to query. If a keyspace is not specified, the current keyspace will be
used.

USING CONSISTENCY <consistency_level>
Optional clause to specify the consistency level. If omitted, the default consistency level is ONE. The following
consistency levels can be specified. See tunable consistency for more information about the different consistency
levels.

• ONE

• QUORUM

• LOCAL_QUOROM (applicable to multi-data center clusters only)

• EACH_QUOROM (applicable to multi-data center clusters only)
The WHERE Clause

The WHERE clause filters the rows that appear in the results. You can filter on a key name, a range of keys, or on
column values (in the case of columns that have a secondary index). Row keys are specified using the KEY
keyword or key alias defined on the column family, followed by a relational operator (one of =, >, >=, <, or <=), and
then a value. When terms appear on both sides of a relational operator it is assumed the filter applies to an indexed
column. With column index filters, the term on the left of the operator must be the name of the indexed column, and
the term on the right is the value to filter on.

Note: The greater-than and less-than operators (> and <) result in key ranges that are inclusive of the terms. There
is no supported notion of strictly greater-than or less-than; these operators are merely supported as aliases to >=
and <=.

The LIMIT Clause
The LIMIT clause limits the number of rows returned by the query. The default is 10,000 rows.

Examples
Select two columns from three rows:

Parameters

112

SELECT name, title FROM employees WHERE KEY IN (199, 200, 207);

Select a range of columns from all rows, but limit the number of columns to 3 per row starting with the end of the range:

SELECT FIRST 3 REVERSED 'time199'..'time100' FROM events;

Count the number of rows in a column family:

SELECT COUNT(*) FROM users;

TRUNCATE
Removes all data from a column family.

Synopsis

TRUNCATE <column_family>;

Description
A TRUNCATE statement results in the immediate, irreversible removal of all data in the named column family.

Parameters
<column_family>

The name of the column family to truncate.

Example

TRUNCATE user_activity;

UPDATE
Updates one or more columns in the identified row of a column family.

Synopsis

UPDATE <column_family>
 [USING <write_option> [AND <write_option> [...]]];
 SET <column_name> = <column_value> [, ...]
 | <counter_column_name> = <counter_column_name> {+ | -} <integer>
 WHERE <row_specification>;

where <write_option> is:

USING CONSISTENCY <consistency_level>
TTL <seconds>
TIMESTAMP <integer>

and where <row_specification> is:

KEY | <key_alias> = <key_value>
KEY | <key_alias> IN (<key_value> [,...])

Description

TRUNCATE

113

An UPDATE is used to update or write one or more columns to the identified row in a Cassandra column family.
Row/column records are created if they do not exist, or updated if they do exist.

Rows are created or updated by supplying column names and values, after the SET keyword. Multiple columns can be
set by separating the name/value pairs using commas. Each update statement requires a precise set of row keys to be
specified using a WHERE clause. Rows are identified using the KEY keyword or the key alias defined on the column
family.

Parameters

<column_family>
The name of the column family from which to update (or insert) the identified columns and rows.

USING CONSISTENCY <consistency_level>
Optional clause to specify the consistency level. If omitted, the default consistency level is ONE. The following
consistency levels can be specified. See tunable consistency for more information about the different consistency
levels.

• ANY (applicable to writes only)

• ONE

• QUORUM

• LOCAL_QUOROM (applicable to multi-data center clusters only)

• EACH_QUOROM (applicable to multi-data center clusters only)
TTL <seconds>

Optional clause to specify a time-to-live (TTL) period for an inserted or updated column. TTL columns are
automatically marked as deleted (with a tombstone) after the requested amount of time has expired.

TIMESTAMP <integer>
Defines an optional timestamp to use for the written columns. The timestamp must be in the form of an integer.

SET
The SET clause is used to specify a comma-separated list of column name/value pairs that you want to update or
insert. If the named column exists, its value will be updated. If it does not exist it will be inserted. For counter
column families, you can update a counter column value by specifying an increment or decrement value to be
applied to the current value of the counter column.

WHERE <row_specification>
The WHERE clause identifies one or more rows in the column family for which to update the named columns. Rows
are identified using the KEY keyword or the key alias defined on the column family, and then supplying one or more
row key values.

Example
Update a column in several rows at once:

UPDATE users USING CONSISTENCY QUORUM
 SET 'state' = 'TX'
 WHERE KEY IN (88b8fd18-b1ed-4e96-bf79-4280797cba80,
 06a8913c-c0d6-477c-937d-6c1b69a95d43,
 bc108776-7cb5-477f-917d-869c12dfffa8);

Update several columns in a single row:

Parameters

114

UPDATE users USING CONSISTENCY QUORUM
 SET 'name' = 'John Smith', 'email' = 'jsmith@cassie.com'
 WHERE user_uuid = 88b8fd18-b1ed-4e96-bf79-4280797cba80;

Update the value of a counter column:

UPDATE page_views USING CONSISTENCY QUORUM AND TIMESTAMP=1318452291034
 SET 'index.html' = 'index.html' + 1
 WHERE KEY = 'www.datastax.com';

USE
Connects the current client session to a keyspace.

Synopsis

USE <keyspace_name>;

Description
A USE statement tells the current client session and the connected Cassandra instance what keyspace you will be
working in. All subsequent operations on column families and indexes will be in the context of the named keyspace,
unless otherwise specified or until the client connection is terminated or another USE statement is issued.

Parameters
<keyspace_name>

The name of the keyspace to connect to for the current client session.

Example

USE PortfolioDemo;

CQLSH-Specific Commands
CQL Shell (cqlsh) has these additional CQL commands available in the command-line interface:

ASSUME
Sets the client-side encoding for a cqlsh session.

Synopsis

ASSUME [<keyspace_name>].<columnfamily_name>
 <storage_type_definition>
 [, ...] ;

Where <storage_type_definition> is:

 .. code-block:: sql

 (KEY | <column_name>) VALUES ARE <datatype>
 | NAMES ARE <datatype>
 | VALUES ARE <datatype>

USE

115

Description
Cassandra is a schema-optional data model, meaning that column families are not required to have data type
information explicitly defined for column names, column values or row key values. When type information is not explicitly
defined, and implicit typing cannot be determined, data is displayed as raw hex bytes (blob type), which is not
human-readable. The ASSUME command allows you to specify type information for particular column family values
passed between the cqlsh client and the Cassandra server.

Parameters
[<keyspace_name>].<columnfamily_name>

The name of the column family (and optionally the keyspace) for which you are specifying assumed types. If
keyspace is not supplied, the keyspace is assumed to be the keyspace you are currently connected to.

NAMES ARE <datatype>
Used to declare an assumed type for column names.

VALUES ARE <datatype>
Used to declare an assumed type for column values.

(KEY | <column_name>) VALUES ARE <datatype>
Used to declare an assumed type for a particular column, such as the row key. If your column family row key does
not have a name or alias defined, you can use the KEY keyword to denote the row key. If the row key (or any other
column) has a name or alias defined in the column family schema, you can declare it by its name.

Examples

ASSUME users NAMES ARE text, VALUES are text;

ASSUME users(KEY) VALUES are uuid;

ASSUME users(user_id) VALUES are uuid;

DESCRIBE
Outputs information about the connected Cassandra cluster, or about the data objects stored in the cluster.

Synopsis

DESCRIBE CLUSTER
 | SCHEMA
 | KEYSPACE [<keyspace_name>]
 | COLUMNFAMILY <columnfamily_name>

Description
A DESCRIBE statement outputs information about the currently connected Cassandra cluster and the data objects
(keyspaces and column families) stored in the cluster. It outputs CQL statements that can be used to recreate the
database schema if needed.

Parameters
CLUSTER

Outputs information about the Cassandra cluster, such as the cluster name, partitioner, and snitch configured for
the cluster. When connected to a non-system keyspace, also shows the data endpoint ranges owned by each node
in the Cassandra ring.

Description

116

SCHEMA
Outputs CQL commands that can be used to recreate the entire schema (all keyspaces and column families
managed by the cluster).

KEYSPACE [<keyspace_name>]
Outputs CQL commands that can be used to recreate the keyspace and its column families. May also show
metadata about the keyspace. If a keyspace name is not provided, the current keyspace is described.

COLUMNFAMILY <columnfamily_name>
Output CQL commands that can be used to recreate the column family schema. May also show metadata about the
column family.

Examples

DESCRIBE CLUSTER;

DESCRIBE KEYSPACE PortfolioDemo;

DESCRIBE COLUMNFAMILY Stocks;

SHOW
Shows the Cassandra version, host, or data type assumptions for the current cqlsh client session.

Synopsis

SHOW VERSION
 | HOST
 | ASSUMPTIONS;

Description
A SHOW statement displays information about the current cqlsh client session, including the Cassandra version, the
Cassandra host, and any data type assumptions that have been set.

Parameters

VERSION
Shows the version and build number of the connected Cassandra instance, as well as the versions of the CQL
specification and the Thrift protocol that the connected Cassandra instance understands.

HOST
Shows the host information of the Cassandra node that the cqlsh session is currently connected to.

ASSUMPTIONS
Shows the data type assumptions for the current cqlsh session as specified by the ASSUME command.

Examples

SHOW VERSION;

SHOW HOST;

SHOW ASSUMPTIONS;

Examples

117

nodetool
Under the bin directory you will find the nodetool utility. This can be used to help manage a cluster. Usage:

bin/nodetool -h HOSTNAME [-p JMX_PORT] COMMAND...

If a username and password for RMI authentication are set explicitly in the cassandra-env.sh file for the host, then
you must specify credentials:

bin/nodetool -h HOSTNAME [-p JMX_PORT -u JMX_USERNAME -p JMX_PASSWORD] COMMAND...

The available commands are:

ring
Displays node status and information about the ring as determined by the node being queried. This can give you a quick
idea of how balanced the load is around the ring and if any nodes are down. If your cluster is not properly configured,
different nodes may show a different ring, so this is a good way to check that every node views the ring the same way.

join
Causes the node to join the ring. This assumes that the node was initially started not in the ring, or in other words,
started with -Djoin_ring=false. Note that the joining node should be properly configured with the desired options
for seed list, initial token, and autoboostrapping.

info
Outputs node information including the token, load info (on disk storage), generation number (times started), uptime in
seconds, and heap memory usage.

cfstats
Prints statistics for every keyspace and column family.

version
Prints the Cassandra release version for the node being queried.

cleanup [keyspace][cf_name]

Triggers the immediate cleanup of keys no longer belonging to this node. This has roughly the same effect on a node
that a major compaction does in terms of a temporary increase in disk space usage and an increase in disk I/O.
Optionally takes a list of column family names.

compact [keyspace][cf_name]

For column families that use the SizeTieredCompactionStrategy, initiates an immediate major compaction of all column
families in keyspace. For each column family in keyspace, this compacts all existing SSTables into a single SSTable.
This will cause considerable disk I/O and will temporarily cause up to twice as much disk space to be used. Optionally
takes a list of column family names.

upgradesstables [keyspace][cf_name]

Rebuilds SSTables on a node for the named column families. Use when upgrading your server or changing
compression options (available from Cassandra 1.0.4 onwards).

scrub [keyspace][cf_name]

Rebuilds SSTables on a node for the named column families and snapshots data files before rebuilding as a safety
measure. If possible use upgradesstables. While scrub rebuilds SSTables, it also discards data that it deems
broken and creates a snapshot, which you have to remove manually.

cfhistograms keyspace cf_name

Prints statistics on the read/write latency for a column family. These statistics, which include row size, column count and
bucket offsets, can be useful for monitoring activity in a column family.

snapshot [snapshot-name]

nodetool

118

Takes an online snapshot of Cassandra’s data. Before taking the snapshot, the node is flushed. The results can be
found in Cassandra’s data directory (typically /var/lib/cassandra/data) under the snapshots directory of each
keyspace. See also:

• http://wiki.apache.org/cassandra/Operations#Backing_up_data
clearsnapshot
Deletes all existing snapshots.

tpstats
Prints the number of active, pending, and completed tasks for each of the thread pools that Cassandra uses for stages
of operations. A high number of pending tasks for any pool can indicate performance problems. For more details, see:

• http://wiki.apache.org/cassandra/Operations#Monitoring
flush keyspace [cf_name]

Flushes all memtables for a keyspace to disk, allowing the commit log to be cleared. Optionally takes a list of column
family names.

drain
Flushes all memtables for a node and causes the node to stop accepting write operations. Read operations will continue
to work. This is typically used before upgrading a node to a new version of Cassandra.

repair keyspace [cf_name] [-pr]

Begins an anti-entropy node repair operation. If the -pr option is specified, only the first range returned by the
partitioner for a node will be repaired. This allows you to repair each node in the cluster in succession without
duplicating work.

Without -pr, all replica ranges that the node is responsible for will be repaired.

Optionally takes a list of column family names.

decommission
Tells a live node to decommission itself (streaming its data to the next node on the ring) See also:

• http://wiki.apache.org/cassandra/NodeProbe#Decommission

• http://wiki.apache.org/cassandra/Operations#Removing_nodes_entirely
move new_token

Moves a node to a new token. This essentially combines decommission and bootstrap. See:

• http://wiki.apache.org/cassandra/Operations#Moving_nodes
loadbalance
Moves the node to a new token so that it will split the range of whatever token currently has the highest load (this is the
same heuristic used for bootstrap). This is rarely called for, as it does not balance the ring in a meaningful way. See
Adding Capacity to an Existing Cluster.

netstats host

Displays network information such as the status of data streaming operations (bootstrap, repair, move and
decommission) as well as the number of active, pending and completed commands and responses.

removetoken status | force | token

Shows status of a current token removal, forces the the completion of a pending removal, or removes a specified token.
This token’s range is assumed by another node and the data is streamed there from the remaining live replicas.

See:

• http://wiki.apache.org/cassandra/Operations#Removing_nodes_entirely

nodetool

119

http://wiki.apache.org/cassandra/Operations#Backing_up_data
http://wiki.apache.org/cassandra/Operations#Monitoring
http://wiki.apache.org/cassandra/NodeProbe#Decommission
http://wiki.apache.org/cassandra/Operations#Removing_nodes_entirely
http://wiki.apache.org/cassandra/Operations#Moving_nodes
http://wiki.apache.org/cassandra/Operations#Removing_nodes_entirely

setcachecapacity keyspace cf_name key_cache_capacity row_cache_capacity

Sets the size of the key cache and row cache. These may be either an absolute number or a percentage in the form of a
floating point number.

invalidatekeycache [keyspace] [cfnames]

Invalidates, or deletes, the key cache. Optionally takes a keyspace or list of column family names (leave a blank space
between each column family name).

invalidaterowcache [keyspace] [cfnames]

Invalidates, or deletes, the row cache. Optionally takes a keyspace or list of column family names (leave a blank space
between each column family name).

getcompactionthreshold keyspace cf_name

Gets the current compaction threshold settings for a column family. See:

• http://wiki.apache.org/cassandra/MemtableSSTable
setcompactionthreshold cf_name min_threshold [max_threshold]

The min_threshold parameter controls how many SSTables of a similar size must be present before a minor compaction
is scheduled. The max_threshold sets an upper bound on the number of SSTables that may be compacted in a single
minor compaction. See also:

• http://wiki.apache.org/cassandra/MemtableSSTable

cassandra
The cassandra utility starts the Cassandra Java server process.

Usage
cassandra [OPTIONS]

Environment
Cassandra requires the following environment variables to be set:

• JAVA_HOME - The path location of your Java Virtual Machine (JVM) installation

• CLASSPATH - A path containing all of the required Java class files (.jar)

• CASSANDRA_CONF - Directory containing the Cassandra configuration files
For convenience, Cassandra uses an include file, cassandra.in.sh, to source these environment variables. It will
check the following locations for this file:

• Environment setting for CASSANDRA_INCLUDE if set

• $CASSANDRA_HOME/bin

• /usr/share/cassandra/cassandra.in.sh

• /usr/local/share/cassandra/cassandra.in.sh

• /opt/cassandra/cassandra.in.sh

• $HOME/.cassandra.in.sh
Cassandra also uses the Java options set in $CASSANDRA_CONF/cassandra-env.sh. If you want to pass additional
options to the Java virtual machine, such as maximum and minimum heap size, edit the options in that file rather than
setting JVM_OPTS in the environment.

Options

cassandra

120

http://wiki.apache.org/cassandra/MemtableSSTable
http://wiki.apache.org/cassandra/MemtableSSTable

-f
Start the cassandra process in foreground (default is to start as a background process).

-p <filename>
Log the process ID in the named file. Useful for stopping Cassandra by killing its PID.

-v
Print the version and exit.

-D <parameter>

Passes in one of the following startup parameters:

Parameter Description
access.properties=<filename> The file location of the access.properties file.

cassandra-pidfile=<filename> Log the Cassandra server process ID in the named file. Useful for
stopping Cassandra by killing its PID.

cassandra.config=<directory> The directory location of the Cassandra configuration files.

cassandra.initial_token=<token>Sets the initial partitioner token for a node the first time the node is
started.

cassandra.join_ring=<true|false>Set to false to start Cassandra on a node but not have the node join the
cluster.

cassandra.load_ring_state=<true|false>Set to false to clear all gossip state for the node on restart. Use if you
have changed node information in cassandra.yaml (such as
listen_address).

cassandra.renew_counter_id=<true|false>Set to true to reset local counter info on a node. Used to recover from
data loss to a counter column family. First remove all SSTables for
counter column families on the node, then restart the node with
-Dcassandra.renew_counter_id=true, then run nodetool
repair once the node is up again.

cassandra.replace_token=<token>To replace a node that has died, restart a new node in its place and use
this parameter to pass in the token that the new node is assuming. The
new node must not have any data in its data directory and the token
passed must already be a token that is part of the ring.

cassandra.framed cassandra.host cassandra.port=<port> cassandra.rpc_port=<port> cassandra.start_rpc=<true|false>
cassandra.storage_port=<port> corrupt-sstable-root legacy-sstable-root mx4jaddress mx4jport passwd.mode
passwd.properties=<file>

Examples
Start Cassandra on a node and log its PID to a file:

cassandra -p ./cassandra.pid

Clear gossip state when starting a node. This is useful if the node has changed its configuration, such as its listen IP
address:

cassandra -Dcassandra.load_ring_state=false

Start Cassandra on a node in stand-alone mode (do not join the cluster configured in the cassandra.yaml file):

cassandra -Dcassandra.join_ring=false

stress

Examples

121

The /tools/stress directory contains the Java-based stress testing utilities that can help in benchmarking and load
testing a Cassandra cluster: stress.java and the daemon stressd. The daemon mode, which keeps the JVM
warm more efficiently, may be useful for large-scale benchmarking.

Setting up the Stress Utility
Use Apache ant to to build the stress testing tool:

1. Run ant from the Cassandra source directory.

2. Run ant from the /tools/stress directory.

Usage
There are three different modes of operation:

• inserting (loading test data)

• reading

• range slicing (only works with the OrderPreservingPartioner)

• indexed range slicing (works with RandomParitioner on indexed ColumnFamiles).
You can use these modes with or without the stressd daemon running. For larger-scale testing, the daemon can yield
better performance by keeping the JVM warm and preventing potential skew in test results.

If no specific operation is specified, stress will insert 1M rows.

The options available are:

-o <operation>, --operation <operation>
Sets the operation mode, one of 'insert', 'read', 'rangeslice', or 'indexedrangeslice'

-T <IP>, --send-to <IP>
Sends the command as a request to the stress daemon at the specified IP address. The daemon must already be
running at that address.

-n <NUMKEYS>, --num-keys <NUMKEYS>
Number of keys to write or read. Default is 1,000,000.

-l <RF>, --replication-factor <RF>
Replication Factor to use when creating needed column families. Defaults to 1.

-R <strategy>, --replication-strategy <strategy>
Replication strategy to use (only on insert when keyspace does not exist. Default
is:org.apache.cassandra.locator.SimpleStrategy.

-O <properties>, --strategy-properties <properties>
Replication strategy properties in the following format <dc_name>:<num>,<dc_name>:<num>,... Use with network
topology strategy.

-W, --no-replicate-on-write
Set replicate_on_write to false for counters. Only for counters add with CL=ONE.

-e <CL>, --consistency-level <CL>
Consistency Level to use (ONE, QUORUM, LOCAL_QUORUM, EACH_QUORUM, ALL, ANY). Default is ONE.

-c <COLUMNS>, --columns <COLUMNS>
Number of columns per key. Default is 5.

Setting up the Stress Utility

122

-d <NODES>, --nodes <NODES>
Nodes to perform the test against.(comma separated, no spaces). Default is “localhost”.

-y <TYPE>, --family-type <TYPE>
Sets the ColumnFamily type. One of 'Standard' or 'Super'. If using super, set the -u option also.

-V, --average-size-values
Generate column values of average rather than specific size.

-u <SUPERCOLUMNS>, --supercolumns <SUPERCOLUMNS>
Use the number of supercolumns specified. You must set the -y option appropriately, or this option has no effect.

-g <COUNT>, --get-range-slice-count <COUNT>
Sets the number of rows to slice at a time and defaults to 1000. This is only used for the rangeslice operation and will
NOT work with the RandomPartioner. You must set the OrderPreservingPartioner in your storage configuration (note
that you will need to wipe all existing data when switching partioners.)

-g <KEYS>, --keys-per-call <KEYS>
Number of keys to get_range_slices or multiget per call. Default is 1000.

-r, --random
Only used for reads. By default, stress will perform reads on rows with a Guassian distribution, which will cause some
repeats. Setting this option makes the reads completely random instead.

-i, --progress-interval
The interval, in seconds, at which progress will be output.

Using the Daemon Mode (stressd)
Usage for the daemon mode is:

/tools/stress/bin/stressd start|stop|status [-h <host>]

During stress testing, you can keep the daemon running and send stress.java commands through it using the -T
or --send-to option flag.

Examples
1M inserts to given host:

/tools/stress/bin/stress -d 192.168.1.101

1M reads from given host:

tools/stress/bin/stress -d 192.168.1.101 -o read

10M inserts spread across two nodes:

/tools/stress/bin/stress -d 192.168.1.101,192.168.1.102 -n 10000000

10M inserts spread across two nodes using the daemon mode:

/tools/stress/bin/stress -d 192.168.1.101,192.168.1.102 -n 10000000 -T 54.0.0.1

sstable2json / json2sstable
The utility sstable2json converts the on-disk SSTable representation of a column family into a JSON formatted
document. Its counterpart, json2sstable , does exactly the opposite: it converts a JSON representation of a column
family to a Cassandra usable SSTable format. Converting SSTables this way can be useful for testing and debugging.

Using the Daemon Mode (stressd)

123

Note
Starting with version 0.7, json2sstable and sstable2json must be run in such a way that the schema can be
loaded from system tables. This means that cassandra.yaml must be found in the classpath and refer to valid
storage directories.

See also: The Import/Export section of http://wiki.apache.org/cassandra/Operations.

sstable2json

This converts the on-disk SSTable representation of a column family into a JSON formatted document.

Usage

bin/sstable2json [-f OUT_FILE] SSTABLE
 [-k KEY [-k KEY [...]]]] [-x KEY [-x KEY [...]]] [-e]

SSTABLE should be a full path to a column-family-name-Data.db file in Cassandra’s data directory. For example,
/var/lib/cassandra/data/Keyspace1/Standard1-e-1-Data.db.

-k allows you to include a specific set of keys. Limited to 500 keys.

-x allows you to exclude a specific set of keys. Limited to 500 keys.

-e causes keys to only be enumerated

Output Format
The output of sstable2json for standard column families is:

{
 ROW_KEY:
 {
 [
 [COLUMN_NAME, COLUMN_VALUE, COLUMN_TIMESTAMP, IS_MARKED_FOR_DELETE],
 [COLUMN_NAME, ...],
 ...
]
 },
 ROW_KEY:
 {
 ...
 },
 ...
}

The output for super column families is:

{
 ROW_KEY:
 {
 SUPERCOLUMN_NAME:
 {
 deletedAt: DELETION_TIME,
 subcolumns:
 [
 [COLUMN_NAME, COLUMN_VALUE, COLUMN_TIMESTAMP, IS_MARKED_FOR_DELETE],
 [COLUMN_NAME, ...],
 ...

sstable2json

124

http://wiki.apache.org/cassandra/Operations

]
 },
 SUPERCOLUMN_NAME:
 {
 ...
 },
 ...
 },
 ROW_KEY:
 {
 ...
 },
 ...
}

Row keys, column names and values are written in as the hex representation of their byte arrays. Line breaks are only
in between row keys in the actual output.

json2sstable

This converts a JSON representation of a column family to a Cassandra usable SSTable format.

Usage

bin/json2sstable -K KEYSPACE -c COLUMN_FAMILY JSON SSTABLE

JSON should be a path to the JSON file

SSTABLE should be a full path to a column-family-name-Data.db file in Cassandra’s data directory. For example,
/var/lib/cassandra/data/Keyspace1/Standard1-e-1-Data.db.

sstablekeys

The sstablekeys utility is shorthand for sstable2json with the -e option. Instead of dumping all of a column
family’s data, it dumps only the keys.

Usage

bin/sstablekeys SSTABLE

SSTABLE should be a full path to a column-family-name-Data.db file in Cassandra’s data directory. For example,
/var/lib/cassandra/data/Keyspace1/Standard1-e-1-Data.db.

Troubleshooting Guide
This page contains recommended fixes and workarounds for issues commonly encountered with Cassandra.

Reads are getting slower while writes are still fast
Check the SSTable counts in cfstats. If the count is continually growing, the cluster's IO capacity is not enough to handle
the write load it is receiving. Reads have slowed down because the data is fragmented across many SSTables and
compaction is continually running trying to reduce them. Adding more IO capacity, either via more machines in the
cluster, or faster drives such as SSDs, will be necessary to solve this.

If the SSTable count is relatively low (32 or less) then the amount of file cache available per machine compared to the
amount of data per machine needs to be considered, as well as the application's read pattern. The amount of file cache

json2sstable

125

can be formulated as (TotalMemory – JVMHeapSize) and if the amount of data is greater and the read pattern is
approximately random, an equal ratio of reads to the cache:data ratio will need to seek the disk. With spinning media,
this is a slow operation. You may be able to mitigate many of the seeks by using a key cache of 100%, and a small
amount of row cache (10000-20000) if you have some 'hot' rows and they are not extremely large.

Nodes seem to freeze after some period of time
Check your system.log for messages from the GCInspector. If the GCInspector is indicating that either the ParNew or
ConcurrentMarkSweep collectors took longer than 15 seconds, there is a very high probability that some portion of the
JVM is being swapped out by the OS. One way this might happen is if the mmap DiskAccessMode is used without JNA
support. The address space will be exhausted by mmap, and the OS will decide to swap out some portion of the JVM
that isn't in use, but eventually the JVM will try to GC this space. Adding the JNA libraries will solve this (they cannot be
shipped with Cassandra due to carrying a GPL license, but are freely available) or the DiskAccessMode can be
switched to mmap_index_only, which as the name implies will only mmap the indicies, using much less address space.
DataStax recommends that Cassandra nodes disable swap entirely, since it is better to have the OS OutOfMemory
(OOM) killer kill the Java process entirely than it is to have the JVM buried in swap and responding poorly.

If the GCInspector isn't reporting very long GC times, but is reporting moderate times frequently (ConcurrentMarkSweep
taking a few seconds very often) then it is likely that the JVM is experiencing extreme GC pressure and will eventually
OOM. See the section below on OOM errors.

Nodes are dying with OOM errors
If nodes are dying with OutOfMemory exceptions, check for these typical causes:

• Row cache is too large, or is caching large rows

• Row cache is generally a high-end optimization. Try disabling it and see if the OOM problems continue.
• The memtable sizes are too large for the amount of heap allocated to the JVM

• You can expect N + 2 memtables resident in memory, where N is the number of column families. Adding
another 1GB on top of that for Cassandra itself is a good estimate of total heap usage.

If none of these seem to apply to your situation, try loading the heap dump in MAT and see which class is consuming
the bulk of the heap for clues.

Nodetool or JMX Connections Failing on Remote Nodes
If you can run nodetool commands locally but not on other nodes in the ring, you may have a common JMX connection
problem that is resolved by adding an entry like the following in $CASSANDRA_HOME/conf/cassandra-env.sh on
each node:

JVM_OPTS="$JVM_OPTS -Djava.rmi.server.hostname=<public name>"

If you still cannot run nodetool commands remotely after making this configuration change, do a full evaluation of your
firewall and network security. The nodetool utility communciates through JMX on port 7199.

View of ring differs between some nodes
This is an indication that the ring is in a bad state. This can happen when there are token conflicts (for instance, when
bootstrapping two nodes simultaneously with automatic token selection.) Unfortunately, the only way to resolve this is to
do a full cluster restart; a rolling restart is insufficient since gossip from nodes with the bad state will repopulate it on
newly booted nodes.

Java reports an error saying there are too many open files
One possibility is that Java is not allowed to open enough file descriptors. Cassandra generally needs more than the
default (1024) amount. This can be adjusted by increasing the security limits on your Cassandra nodes. For example,

Nodes seem to freeze after some period of time

126

http://www.eclipse.org/mat

using the following commands:

echo "* soft nofile 32768" | sudo tee -a /etc/security/limits.conf
echo "* hard nofile 32768" | sudo tee -a /etc/security/limits.conf
echo "root soft nofile 32768" | sudo tee -a /etc/security/limits.conf
echo "root hard nofile 32768" | sudo tee -a /etc/security/limits.conf

Another, much less likely possibility, is a file descriptor leak in Cassandra. See if the number of file descriptors opened
by java seems reasonable when running lsof -n | grep java and report the error if the number is greater than a
few thousand.

Nodes seem to freeze after some period of time

127

	Apache Cassandra 1.0 Documentation
	Introduction to Apache Cassandra
	Getting Started with Cassandra
	Java Prerequisites
	Download the Software
	Install the Software
	Start the Cassandra Server
	Login to Cassandra
	Create a Keyspace (database)
	Create a Column Family
	Insert, Update, Delete, Read Data

	Getting Started with Cassandra and DataStax Community Edition
	Installing a Single-Node Instance of Cassandra
	Checking for a Java Installation
	Installing the DataStax Community Binaries on Linux
	Configuring and Starting a Single-Node Cluster on Linux
	Installing the DataStax Community Binaries on Mac
	Installing the DataStax Community Binaries on Windows
	Configuring and Starting DataStax OpsCenter

	Running the Portfolio Demo Sample Application
	About the Portfolio Demo Use Case
	Running the Demo Web Application
	Exploring the Sample Data Model
	Looking at the Schema Definitions in Cassandra-CLI

	DataStax Community Release Notes
	What's New
	Prerequisites

	Understanding the Cassandra Architecture
	About Internode Communications (Gossip)
	About Cluster Membership and Seed Nodes
	About Failure Detection and Recovery

	About Data Partitioning in Cassandra
	About Partitioning in Multi-Data Center Clusters
	Understanding the Partitioner Types
	About the Random Partitioner
	About Ordered Partitioners

	About Replication in Cassandra
	About Replica Placement Strategy
	SimpleStrategy
	NetworkTopologyStrategy

	About Snitches
	SimpleSnitch
	DseSimpleSnitch
	RackInferringSnitch
	PropertyFileSnitch
	EC2Snitch
	EC2MultiRegionSnitch
	About Dynamic Snitching

	About Client Requests in Cassandra
	About Write Requests
	About Multi-Data Center Write Requests

	About Read Requests

	Planning a Cassandra Cluster Deployment
	Selecting Hardware
	Memory
	CPU
	Disk
	Network

	Planning an Amazon EC2 Cluster
	Capacity Planning
	Calculating Usable Disk Capacity
	Calculating User Data Size

	Choosing Node Configuration Options
	Storage Settings
	Gossip Settings
	Purging Gossip State on a Node

	Partitioner Settings
	Snitch Settings
	Configuring the PropertyFileSnitch

	Choosing Keyspace Replication Options

	Installing and Initializing a Cassandra Cluster
	Installing Cassandra Using the Packaged Releases
	Creating the Cassandra User and Configuring sudo
	Installing Cassandra RPM Packages
	Installing Sun JRE on RedHat Systems

	Installing Cassandra Debian Packages
	Installing Sun JRE on Ubuntu Systems

	About Packaged Installs
	Next Steps

	Installing the Cassandra Tarball Distribution
	About Cassandra Binary Installations
	Installing JNA
	Next Steps

	Initializing a Cassandra Cluster on Amazon EC2 Using the DataStax AMI
	Creating an EC2 Security Group for DataStax Community Edition
	Launching the DataStax Community AMI
	Connecting to Your Cassandra EC2 Instance

	Configuring and Starting a Cassandra Cluster
	Initializing a Multi-Node or Multi-Data Center Cluster
	Calculating Tokens
	Calculating Tokens for Multiple Racks
	Calculating Tokens for a Single Data Center
	Calculating Tokens for a Multi-Data Center Cluster

	Starting and Stopping a Cassandra Node
	Starting/Stopping Cassandra as a Stand-Alone Process
	Starting/Stopping Cassandra as a Service

	Upgrading Cassandra
	Best Practices for Upgrading Cassandra
	Upgrading Cassandra: 0.8.x to 1.0.x
	New and Changed Parameters between 0.8 and 1.0
	Upgrading Between Minor Releases of Cassandra 1.0.x

	Understanding the Cassandra Data Model
	The Cassandra Data Model
	Comparing the Cassandra Data Model to a Relational Database

	About Keyspaces
	Defining Keyspaces

	About Column Families
	About Columns
	About Special Columns (Counter, Expiring, Super)
	About Expiring Columns
	About Counter Columns
	About Super Columns

	About Data Types (Comparators and Validators)
	About Validators
	About Comparators

	About Column Family Compression
	When to Use Compression
	Configuring Compression on a Column Family

	About Indexes in Cassandra
	About Primary Indexes
	About Secondary Indexes
	Building and Using Secondary Indexes

	Planning Your Data Model
	Start with Queries
	Denormalize to Optimize
	Planning for Concurrent Writes
	Using Natural or Surrogate Row Keys
	UUID Types for Column Names

	Managing and Accessing Data in Cassandra
	About Writes in Cassandra
	About Compaction
	About Transactions and Concurrency Control
	About Inserts and Updates
	About Deletes
	About Hinted Handoff Writes

	About Reads in Cassandra
	About Data Consistency in Cassandra
	Tunable Consistency for Client Requests
	About Write Consistency
	About Read Consistency
	Choosing Client Consistency Levels
	Consistency Levels for Multi-Data Center Clusters
	Specifying Client Consistency Levels

	About Cassandra's Built-in Consistency Repair Features

	Cassandra Client APIs
	About Cassandra CLI
	About CQL
	Other High-Level Clients
	Java: Hector Client API
	Python: Pycassa Client API
	PHP: Phpcassa Client API

	Getting Started Using the Cassandra CLI
	Creating a Keyspace
	Creating a Column Family
	Creating a Counter Column Family
	Inserting Rows and Columns
	Reading Rows and Columns
	Setting an Expiring Column
	Indexing a Column
	Deleting Rows and Columns
	Dropping Column Families and Keyspaces

	Getting Started with CQL
	Starting the CQL Command-Line Program (cqlsh)
	Running CQL Commands with cqlsh
	Creating a Keyspace
	Creating a Column Family
	Inserting and Retrieving Columns
	Adding Columns with ALTER COLUMNFAMILY
	Altering Column Metadata
	Specifying Column Expiration with TTL
	Dropping Column Metadata
	Indexing a Column
	Deleting Columns and Rows
	Dropping Column Families and Keyspaces

	Configuration
	Node and Cluster Configuration (cassandra.yaml)
	Node and Cluster Initialization Properties
	auto_bootstrap
	broadcast_address
	cluster_name
	commitlog_directory
	data_file_directories
	initial_token
	listen_address
	partitioner
	rpc_address
	rpc_port
	saved_caches_directory
	seed_provider
	seeds
	storage_port
	endpoint_snitch

	Performance Tuning Properties
	column_index_size_in_kb
	commitlog_sync
	commitlog_sync_period_in_ms
	commitlog_total_space_in_mb
	compaction_preheat_key_cache
	compaction_throughput_mb_per_sec
	concurrent_compactors
	concurrent_reads
	concurrent_writes
	flush_largest_memtables_at
	in_memory_compaction_limit_in_mb
	index_interval
	memtable_flush_queue_size
	memtable_flush_writers
	memtable_total_space_in_mb
	multithreaded_compaction
	reduce_cache_capacity_to
	reduce_cache_sizes_at
	sliced_buffer_size_in_kb
	stream_throughput_outbound_megabits_per_sec

	Remote Procedure Call Tuning Properties
	request_scheduler
	request_scheduler_id
	request_scheduler_options
	throttle_limit
	default_weight
	weights

	rpc_keepalive
	rpc_max_threads
	rpc_min_threads
	rpc_recv_buff_size_in_bytes
	rpc_send_buff_size_in_bytes
	rpc_timeout_in_ms
	rpc_server_type
	thrift_framed_transport_size_in_mb
	thrift_max_message_length_in_mb

	Internode Communication and Fault Detection Properties
	dynamic_snitch
	dynamic_snitch_badness_threshold
	dynamic_snitch_reset_interval_in_ms
	dynamic_snitch_update_interval_in_ms
	hinted_handoff_enabled
	hinted_handoff_throttle_delay_in_ms
	max_hint_window_in_ms
	phi_convict_threshold

	Automatic Backup Properties
	incremental_backups
	snapshot_before_compaction

	Security Properties
	authenticator
	authority
	internode_encryption
	keystore
	keystore_password
	truststore
	truststore_password

	Keyspace and Column Family Storage Configuration
	Keyspace Attributes
	name
	placement_strategy
	strategy_options

	Column Family Attributes
	column_metadata
	column_type
	comment
	compaction_strategy
	compaction_strategy_options
	comparator
	compare_subcolumns_with
	compression_options
	default_validation_class
	gc_grace_seconds
	key_cache_save_period_in_seconds
	keys_cached
	key_validation_class
	name
	read_repair_chance
	replicate_on_write
	max_compaction_threshold
	min_compaction_threshold
	memtable_flush_after_mins
	memtable_operations_in_millions
	memtable_throughput_in_mb
	rows_cached
	row_cache_provider
	row_cache_save_period_in_seconds

	Java and System Environment Settings Configuration
	Heap Sizing Options
	JMX Options
	Further Reading on JVM Tuning

	Authentication and Authorization Configuration
	access.properties
	passwd.properties

	Logging Configuration
	Logging Levels via the Properties File
	Logging Levels via JMX

	Operations
	Monitoring a Cassandra Cluster
	Monitoring Using DataStax OpsCenter
	Monitoring Using nodetool
	Monitoring Using JConsole
	Compaction Metrics
	Thread Pool Statistics
	Read/Write Latency Metrics
	ColumnFamily Statistics
	Monitoring and Adjusting Cache Performance

	Tuning Cassandra
	Tuning the Cache
	How Caching Works
	Configuring the Column Family Key Cache
	Configuring the Column Family Row Cache
	Data Modeling Considerations for Cache Tuning
	Hardware and OS Considerations for Cache Tuning
	Estimating Cache Sizes

	Tuning Write Performance (Memtables)
	Tuning Java Heap Size
	Tuning Java Garbage Collection
	Tuning Compaction
	Choosing a Column Family Compaction Strategy
	Setting the Compaction Strategy on a Column Family
	Tuning Options for Size-Tiered Compaction

	Managing a Cassandra Cluster
	Running Routine Node Repair
	Adding Capacity to an Existing Cluster
	Calculating Tokens For the New Nodes
	Adding Nodes to a Cluster

	Changing the Replication Factor
	Replacing a Dead Node

	Backing Up and Restoring Data
	Taking a Snapshot
	Clearing Snapshot Files
	Enabling Incremental Backups

	Restoring from a Snapshot

	References
	CQL Language Reference
	CQL Lexical Structure
	CQL Identifiers and Keywords
	CQL Constants
	CQL Comments
	CQL Consistency Levels

	CQL Data Types
	Working with Dates and Times

	CQL Storage Parameters
	CQL Keyspace Storage Parameters
	CQL Column Family Storage Parameters

	CQL Commands
	ALTER COLUMNFAMILY
	Synopsis
	Description
	Parameters
	Examples

	BATCH
	Synopsis
	Description
	Parameters
	Example

	CREATE COLUMNFAMILY
	Synopsis
	Description
	Parameters
	Examples

	CREATE INDEX
	Synopsis
	Description
	Parameters
	Examples

	CREATE KEYSPACE
	Synopsis
	Description
	Parameters
	Examples

	DELETE
	Synopsis
	Description
	Parameters
	Example

	DROP COLUMNFAMILY
	Synopsis
	Description
	Parameters
	Example

	DROP INDEX
	Synopsis
	Description
	Parameters
	Example

	DROP KEYSPACE
	Synopsis
	Description
	Parameters
	Example

	INSERT
	Synopsis
	Description
	Parameters
	Example

	SELECT
	Synopsis
	Description
	Parameters
	Examples

	TRUNCATE
	Synopsis
	Description
	Parameters
	Example

	UPDATE
	Synopsis
	Description
	Parameters
	

	Example

	USE
	Synopsis
	Description
	Parameters
	Example

	CQLSH-Specific Commands
	ASSUME
	Synopsis
	Description
	Parameters
	Examples

	DESCRIBE
	Synopsis
	Description
	Parameters
	Examples

	SHOW
	Synopsis
	Description
	Parameters
	Examples

	nodetool
	cassandra
	Usage
	Environment
	Options
	Examples

	stress
	Setting up the Stress Utility
	Usage
	Using the Daemon Mode (stressd)
	Examples

	sstable2json / json2sstable
	sstable2json
	Usage
	Output Format

	json2sstable
	Usage

	sstablekeys
	Usage

	Troubleshooting Guide
	Reads are getting slower while writes are still fast
	Nodes seem to freeze after some period of time
	Nodes are dying with OOM errors
	Nodetool or JMX Connections Failing on Remote Nodes
	View of ring differs between some nodes
	Java reports an error saying there are too many open files

