CS 425/ ECE 428
Distributed Systems
Fall 2017

Indranil Gupta (Indy)
Sep 14, 2017

Lecture 6: Failure Detection and
Membership, Grids All slides © IG

A Challenge

You’ve been put in charge of a datacenter, and your
manager has told you, “Oh no! We don’ t have any failures
in our datacenter!”

Do you believe him/her?

What would be your first responsibility?
Build a failure detector

What are some things that could go wrong if you didn’ t do
this?

Failures are the Norm

... hot the exception, in datacenters.

Say, the rate of failure of one machine (OS/disk/motherboard/network,
etc.) 1s once every 10 years (120 months) on average.

When you have 120 servers in the DC, the mean time to failure (MTTF)
of the next machine is 1 month.

When you have 12,000 servers in the DC, the MTTF is about once every
7.2 hours!

Soft crashes and failures are even more frequent!

To build a failure detector

* You have a few options

1. Hire 1000 people, each to monitor one machine in the datacenter and
report to you when it fails.

2. Write a failure detector program (distributed) that automatically detects
failures and reports to your workstation.

Which is more preferable, and why?

Target Settings

 Process ‘group’ -based systems
— Clouds/Datacenters

— Replicated servers
— Distributed databases

* Fail-stop (crash) process failures

Group Membership Service

Appllcatlon Querles

e.g gossip, overlays,
DHT’ S, “etc.

Application Process pi

Membership
Protocol

Membership List

Unreliable
Communication

Two sub-protocols

Application Process pi
Group -

*Complete list all the time (Strongly consistent) M’

Failure Detector ’

Virtual synchrony
*Almost-Complete list (Weakly consistent)
*Gossip-style, S

«SCAMP, T-MAN, Cyclon,... Unreliable

Focus of this series of lecture Communication

Large Group: Scalability A Goal

this is us (pi) "-
o S

- S,
L
_—

S—
- A
L
S
Unreliable Communica 1on
etwor

Group Membership Protocol

ome Proccess

f1 t quackl
pj\fms ed’!\ AR

l —
i\‘\ o |
- L
11 -
Unreliable Communication
etwor

Fail-stop Failures only :

Next

* How do you design a group membership
protocol?

10

I. pj crashes

Nothing we can do about it!
A frequent occurrence
Common case rather than exception

Frequency goes up linearly with size of
datacenter

11

II. Distributed Failure Detectors:

Desirable Properties
* Completeness = each failure 1s detected
= there 1s no mistaken detection
* Speed
— Time to first detection of a failure

* Scale
— Equal Load on each member
— Network Message Load

12

Distributed Failure Detectors:

Properties
.--«~Completeness ~~~.,_—
~-.e Accuracy
* Speed

— Time to first detection of a failur

* Scale
— Equal Load on each member

— Network Message Load

What Real Failure Detectors Prefer

-

-
-
-—

-~

—~ - -

-———— =
-
-

Partial/Probabilistic
guarantee

* Speed

— Time to first detection of a failure

* Scale
— Equal Load on each member
— Network Message Load

What Real Failure Detectors Prefer

-~

-
‘—
—_ -

T | Partial/Probabilistic

guarantee

e ———
-
-

* Speed

— Time to first detection of a failure

— Equal Load on each member

— Network Message Load 15

What Real Failure Detectors Prefer

-

-
-~ —
-

o--mEEERmSoo—-e==miLl_ L —— | Partial/Probabilistic

guarantee

* Speed

— Time to first detection of a failure

e Scale

— Equal Load on eac

No bottlenecks/single

— Network Message Load failure point

Failure Detector Properties

Completeness
Accuracy

Speed
— Time to first detection of a failure
Scale

— Equal Load on each member
— Network Message Load

Centralized Heartbeating

e S @Huspe 5>
o

*Heartbeats sent periodically

*[f heartbeat not received from pi within
.) . 18

timeout, mark pi as failed

Ring Heartbeating

@ Unpredictable on
simultaneous multiple
failures

19

All-to-All Heartbeat;

ingle hb loss = false
ctestion

20

Next

* How do we increase the robustness of all-to-all
heartbeating?

21

Gossip-style Heartbeating

© Good accuracy
properties

22

Gossip-Style Failure Detection

1 10120 66
2 10103 62
3 10098 63
4 10111 65

e
Address

T

Time (local)

Heartbeat Counter

Protocol:

*Nodes periodically gossip their membership
list: pick random nodes, send it list

*On receipt, it is merged with local

membership list

*When an entry times out, member is marked

as failed

1 10118 64
2 10110 64
3 10090 58
4 10111 65
1 10120 70
2 10110 64
3 10098 70
4 10111 65

Current time : 70 at node 2

(asynchronous clocks)

23

Gossip-Style Failure Detection

e If the heartbeat has not increased for more than
T, seconds,
the member 1s considered failed

* And after a further T,,,, seconds, it will
delete the member from the list

* Why an additional timeout? Why not delete
right away?

24

Gossip-Style Failure Detection

* What if an entry pointing to a failed node 1s
deleted right after T, (=24) seconds?

10120

66

10103

62

1
2
3
4

10098

55

10111

65

) 4

‘/Q

10120

66

10110

64

1009%

66

Al

10111

65

Current time : 75 at node 2

25

Analysis/Discussion

Well-known result: a gossip takes O(log(N)) time to propagate.

So: Given sufficient bandwidth, a single heartbeat takes O(log(N)) time to
propagate.

So: N heartbeats take:

— O(log(N)) time to propagate, if bandwidth allowed per node is allowed to be
O(N)

— O(N.log(N)) time to propagate, if bandwidth allowed per node is only O(1)

— What about O(k) bandwidth?

What happens if gossip period T
What happens to P
Tradeoft: False positive rate vs. detection time vs. bandwidth

cossip 18 decreased?

(false positive rate) as Ty, , T

cleanup 1S INCTeased?

mistake

Next

* So, 1s this the best we can do? What 1s the best
we can do?

27

Failure Detector Properties ...

Completeness
Accuracy
Speed
— Time to first detection of a failure

Scale
— Equal Load on each member
— Network Message Load

28

Are application-defined Requirements

— Time to first detection of a failure

* Scale
— Equal Load on each member
— Network Message Load

29

Are application-defined Requirements

— Time to first detectrerofofailira
N*L: Compare this across protocols

-
-
-
- = — _——_—
—
e e e o o e e e e o = = = =

— Network Message Load

30

All-to-All Heartbeating

_ .
/
L2
\J
. o Y
0’ "
2 .
AT
o o O

31

Gossip-style Heartbeating

] _
«n
. Y
-
® *
.

L=N/tg=N*logN/T

32

What’s the Best/Optimal we can do?

* Worst case load L* per member 1n the group
(messages per second)

— as a function of T, PM(T), N
— Independent Message Loss probability p, ,

_ log(PM(T)) 1
log(pml) T

o L*

Heartbeating
* Optimal L 1s independent of N (!)
* All-to-all and gossip-based: sub-optimal
.« L=O(N/T)
* try to achieve simultaneous detection at all processes

e fail to distinguish Failure Detection and Dissemination
components

=Can we reach this bound?
>Key:
0 Separate the two components
0 Use a non heartbeat-based Failure Detection Component

34

Next

e Is there a better failure detector?

35

SWIM Failure Detector Protocol

pl

*random pj

random K
ping-req

e
O
|.l
5
Q

Protocol period
=T’ time units
|

|
v

— - ——— oy,
’— ~~

P

~

~—y -
—y - -
el

—_—
_—-
—_—

— —
—

—
— el

—
—
-~
—
—_—
-~
5..~
—
—
—
b s
—

—
B
-
-

—
—
—
—
—
—
—-— =
—
—
—
—
—
— -

— e o
- -_———_

K random
processes

36

Detection Time

| _
* Prob. of being pingedin T’= 1—(1 _N)N '=1-¢"

. E[T']= T _%_
e—1
* Completeness: Any alive member detects failure

— Eventually
— By using a trick: within worst case O(N) protocol periods

37

Accuracy, Load

* PM(T) 1s exponential in -K. Also depends on pm/ (and
pf)

— See paper
L E[L]
— < 28 <8
* |L* L* for up to 15 % loss rates

38

SWIM Failure Detector

Parameter

SWIM

First Detection Time

e

e—1

* Constant (independent of group size)

* Expected periods

Process Load

* Constant per period
* <8 L* for 15% loss

False Positive Rate

* Tunable (via K)
* Falls exponentially as load is scaled

Completeness

* Deterministic time-bounded
» Within O(log(N)) periods w.h.p.

39

Time-bounded Completeness

* Key: select each membership element once as a
ping target 1n a traversal

— Round-robin pinging
— Random permutation of list after each traversal

e Each failure 1s detected in worst case 2N-1
(local) protocol periods

* Preserves FD properties "

SWIM versus Heartbeating

A

ON) g

First Detection
Time

Heartbeating

SWIM
e

Heartbeating

For Fixed :
» False Positive Rate
* Message Loss Rate

m Process Load

m >

41

Next

* How do failure detectors fit into the big picture
of a group membership protocol?

* What are the missing blocks?

42

Group Membership Protocol
ome Proccess
L

ut i]}tickly

——

|l Dissemination
s

e.‘- eliable Communicatigon
etwor

L~ /\

43

Dissemination Options
* Multicast (Hardware / IP)

— unreliable
— multiple stmultaneous multicasts

* Point-to-point (TCP / UDP)
— expensive

* Zero extra messages: Piggyback on Failure
Detector messages

— Infection-style Dissemination

44

Infection-style Dissemination

— - ——— oy,
’— ~~

pi)24 ¢~ oS
vy =. \ _
; *random = e TSR P
| ping| = T T = -—-- > K random
| _ -
| X— - = ack Processes
|
| *random K |____<-
: ping-req ~~~~~.~::_ —————————— »X
. T~
Protocol period hem === ping
=T time units ack [~ " mso-- >

ack Piggybacked
membership

information
45

—
—
—
—
—
—
—
—
—-— =
—
—
—
—
—
—
—
—
—

|
v

Infection-style Dissemination

* Epidemic/Gossip style dissemination

— After A.log(N) protocol periods, N~ processes would not
have heard about an update

* Maintain a buffer of recently joined/evicted processes
— Piggyback from this buffer
— Prefer recent updates

* Buffer elements are garbage collected after a while

— After J.10g(N) protocol periods, 1.e., once they’ve propagated
through the system; this defines weak consistency

46

Suspicion Mechanism

* False detections, due to
— Perturbed processes

— Packet losses, e.g., from congestion
* Indirect pinging may not solve the problem

* Key: suspect a process before declaring 1t as
failed 1n the group

47

Suspicion Mechanism [,

:

Dissmn‘ (Suspect pj)

—

Dissmn | (Failed pj)

Suspicion Mechanism

Distinguish multiple suspicions of a process
— Per-process incarnation number

— Inc # for pi can be incremented only by pi

* e.g., when it receives a (Suspect, pi) message

— Somewhat similar to DSDV (routing protocol in ad-hoc nets)
Higher inc# notifications over-ride lower inc# s
Within an inc#: (Suspect inc #) > (Alive, Inc #)

(Failed, inc #) overrides everything else N

Swim In Industry

e First used in Oasis/Coral CDN

* Implemented open-source by Hashicorp Inc.
— Called “Serf”

* Today: Uber implemented it, uses 1t for failure detection
in their infrastructure

— See “ringpop” system

50

Wrap Up

Failures the norm, not the exception in datacenters
Every distributed system uses a failure detector
Many distributed systems use a membership service

Ring failure detection underlies
— IBM SP2 and many other similar clusters/machines

Gossip-style failure detection underlies
— Amazon EC2/S3 (rumored!)

51

Grid Computing

* Please view two video lectures linked from
Lectures Schedule page

— Part of syllabus! (will appear on exams)

— Slides also on webpage

