
CS 425 / ECE 428
Distributed Systems

Fall 2017
Indranil Gupta (Indy)

Sep 7, 2017
Lecture 4: Mapreduce and Hadoop

All slides © IG1

“A Cloudy History of Time”

1940
1950

1960

1970

1980

1990

2000

Timesharing Companies
& Data Processing Industry

Grids

Peer to peer systems

Clusters

The first datacenters!

PCs
(not distributed!)

Clouds and datacenters

2012

2

“A Cloudy History of Time”

1940
1950

1960

1970

1980

1990

2000

2012 CloudsGrids (1980s-2000s):
•GriPhyN (1970s-80s)
•Open Science Grid and Lambda Rail (2000s)
•Globus & other standards (1990s-2000s)

Timesharing Industry (1975):
•Market Share: Honeywell 34%, IBM 15%,
•Xerox 10%, CDC 10%, DEC 10%, UNIVAC 10%
•Honeywell 6000 & 635, IBM 370/168,

Xerox 940 & Sigma 9, DEC PDP-10, UNIVAC 1108

Data Processing Industry
- 1968: $70 M. 1978: $3.15 Billion

First large datacenters: ENIAC, ORDVAC, ILLIAC
Many used vacuum tubes and mechanical relays

Berkeley NOW Project
Supercomputers
Server Farms (e.g., Oceano)

P2P Systems (90s-00s)
•Many Millions of users
•Many GB per day

3

Four Features New in Today’s Clouds

I. Massive scale.
II. On-demand access: Pay-as-you-go, no upfront commitment.

– And anyone can access it

III. Data-intensive Nature: What was MBs has now become TBs, PBs and
XBs.

– Daily logs, forensics, Web data, etc.
– Humans have data numbness: Wikipedia (large) compressed is only about 10 GB!

IV. New Cloud Programming Paradigms: MapReduce/Hadoop,
NoSQL/Cassandra/MongoDB and many others.

– High in accessibility and ease of programmability
– Lots of open-source

Combination of one or more of these gives rise to novel and unsolved
distributed computing problems in cloud computing. 4

What is MapReduce?
• Terms are borrowed from Functional Language (e.g., Lisp)
Sum of squares:

• (map square ‘(1 2 3 4))
– Output: (1 4 9 16)
[processes each record sequentially and independently]

• (reduce + ‘(1 4 9 16))
– (+ 16 (+ 9 (+ 4 1)))
– Output: 30
[processes set of all records in batches]

• Let’s consider a sample application: Wordcount
– You are given a huge dataset (e.g., Wikipedia dump or all of Shakespeare’s works) and asked to list the count for each

of the words in each of the documents therein 5

Map

• Process individual records to generate
intermediate key/value pairs.

Welcome	Everyone
Hello	Everyone

Welcome 1
Everyone 1	
Hello 1
Everyone 1	

Input <filename, file text>

Key Value

6

Map

• Parallelly Process individual records to
generate intermediate key/value pairs.

Welcome	Everyone
Hello	Everyone

Welcome 1
Everyone 1	
Hello 1
Everyone 1	Input <filename, file text>

MAP TASK 1

MAP TASK 2
7

Map

• Parallelly Process a large number of
individual records to generate intermediate
key/value pairs.

Welcome	Everyone

Hello	Everyone

Why	are	you	here	

I	am	also	here

They	are	also	here

Yes,	it’s	THEM!	

The	same	people	we	were	thinking	of

…….

Welcome 1

Everyone 1	

Hello 1

Everyone 1

Why	 1

Are 1

You 1

Here 1

…….Input <filename, file text>

MAP TASKS
8

Reduce
• Reduce processes and merges all intermediate

values associated per key

Welcome 1
Everyone 1	
Hello 1
Everyone 1	

Everyone 2	
Hello 1
Welcome 1

Key Value

9

Reduce
• Each key assigned to one Reduce
• Parallelly Processes and merges all intermediate values by partitioning

keys

• Popular: Hash partitioning, i.e., key is assigned to
– reduce # = hash(key)%number of reduce tasks

Welcome 1
Everyone 1	
Hello 1
Everyone 1	

Everyone 2	
Hello 1
Welcome 1

REDUCE
TASK 1

REDUCE
TASK 2

10

Hadoop Code - Map
public static class MapClass extends MapReduceBase implements

Mapper<LongWritable, Text, Text, IntWritable> {

private final static IntWritable one =

new IntWritable(1);

private Text word = new Text();

public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output, Reporter reporter)

// key is empty, value is the line

throws IOException {

String line = value.toString();

StringTokenizer itr = new StringTokenizer(line);

while (itr.hasMoreTokens()) {

word.set(itr.nextToken());

output.collect(word, one);

}

}

} // Source: http://developer.yahoo.com/hadoop/tutorial/module4.html#wordcount

11

Hadoop Code - Reduce
public static class ReduceClass extends MapReduceBase implements

Reducer<Text, IntWritable, Text, IntWritable> {

public void reduce(

Text key,

Iterator<IntWritable> values,

OutputCollector<Text, IntWritable> output,

Reporter reporter)

throws IOException {

// key is word, values is a list of 1’s

int sum = 0;

while (values.hasNext()) {

sum += values.next().get();

}

output.collect(key, new IntWritable(sum));

}

} // Source: http://developer.yahoo.com/hadoop/tutorial/module4.html#wordcount 12

Hadoop Code - Driver
// Tells Hadoop how to run your Map-Reduce job

public void run (String inputPath, String outputPath)

throws Exception {

// The job. WordCount contains MapClass and Reduce.

JobConf conf = new JobConf(WordCount.class);

conf.setJobName(”mywordcount");

// The keys are words

(strings) conf.setOutputKeyClass(Text.class);

// The values are counts (ints)

conf.setOutputValueClass(IntWritable.class);

conf.setMapperClass(MapClass.class);

conf.setReducerClass(ReduceClass.class);

FileInputFormat.addInputPath(

conf, newPath(inputPath));

FileOutputFormat.setOutputPath(

conf, new Path(outputPath));

JobClient.runJob(conf);

} // Source: http://developer.yahoo.com/hadoop/tutorial/module4.html#wordcount
13

Some Applications of MapReduce
Distributed Grep:
– Input: large set of files
– Output: lines that match pattern

– Map – Emits a line if it matches the supplied pattern
– Reduce – Copies the intermediate data to output

14

Some Applications of MapReduce
(2)

Reverse Web-Link Graph
– Input: Web graph: tuples (a, b) where (page a à page b)
– Output: For each page, list of pages that link to it

– Map – process web log and for each input <source, target>, it outputs
<target, source>

– Reduce - emits <target, list(source)>

15

Some Applications of MapReduce
(3)

Count of URL access frequency
– Input: Log of accessed URLs, e.g., from proxy server
– Output: For each URL, % of total accesses for that URL

– Map – Process web log and outputs <URL, 1>
– Multiple Reducers - Emits <URL, URL_count>
(So far, like Wordcount. But still need %)
– Chain another MapReduce job after above one
– Map – Processes <URL, URL_count> and outputs <1, (<URL, URL_count>)>
– 1 Reducer – Does two passes. In first pass, sums up all URL_count’s to calculate

overall_count. In second pass calculates %’s
Emits multiple <URL, URL_count/overall_count>

16

Some Applications of MapReduce
(4)

Map task’s output is sorted (e.g., quicksort)
Reduce task’s input is sorted (e.g., mergesort)

Sort
– Input: Series of (key, value) pairs
– Output: Sorted <value>s

– Map – <key, value> à <value, _> (identity)
– Reducer – <key, value> à <key, value> (identity)
– Partitioning function – partition keys across reducers based on ranges (can’t use

hashing!)
• Take data distribution into account to balance reducer tasks

17

Programming MapReduce
Externally: For user

1. Write a Map program (short), write a Reduce program (short)
2. Specify number of Maps and Reduces (parallelism level)
3. Submit job; wait for result
4. Need to know very little about parallel/distributed programming!

Internally: For the Paradigm and Scheduler
1. Parallelize Map
2. Transfer data from Map to Reduce (shuffle data)
3. Parallelize Reduce
4. Implement Storage for Map input, Map output, Reduce input, and Reduce output
(Ensure that no Reduce starts before all Maps are finished. That is, ensure the barrier between the Map
phase and Reduce phase) 18

Inside MapReduce
For the cloud:

1. Parallelize Map: easy! each map task is independent of the other!
• All Map output records with same key assigned to same Reduce

2. Transfer data from Map to Reduce:
• Called Shuffle data
• All Map output records with same key assigned to same Reduce task
• use partitioning function, e.g., hash(key)%number of reducers

3. Parallelize Reduce: easy! each reduce task is independent of the other!
4. Implement Storage for Map input, Map output, Reduce input, and Reduce

output
• Map input: from distributed file system
• Map output: to local disk (at Map node); uses local file system
• Reduce input: from (multiple) remote disks; uses local file systems
• Reduce output: to distributed file system
local file system = Linux FS, etc.
distributed file system = GFS (Google File System), HDFS (Hadoop

Distributed File System) 19

1
2
3
4
5
6
7

Blocks
from DFS

Servers

Resource Manager (assigns maps and reduces to servers)

Map tasks

I

II

III

Output files
into DFS

A

B

C
Servers

A

B

C

(Local write, remote read)

Reduce tasks

20

The YARN Scheduler
• Used underneath Hadoop 2.x +
• YARN = Yet Another Resource Negotiator
• Treats each server as a collection of containers

– Container = fixed CPU + fixed memory (think of Linux cgroups, but even more lightweight)
• Has 3 main components

– Global Resource Manager (RM)
• Scheduling

– Per-server Node Manager (NM)
• Daemon and server-specific functions

– Per-application (job) Application Master (AM)
• Container negotiation with RM and NMs
• Detecting task failures of that job

21

YARN: How a job gets a container

Resource	Manager
Capacity	Scheduler

Node	A
Node	Manager	A

Application	
Master	1

Node	B
Node	Manager	B

Application	
Master	2

Task	(App2)

2. Container Completed1. Need
container 3. Container on Node B

4. Start task, please!

In this figure
• 2 servers (A, B)
• 2 jobs (1, 2)

22

Fault Tolerance
• Server Failure

– NM heartbeats to RM
• If server fails: RM times out waiting for next heartbeat, RM

lets all affected AMs know, and AMs take appropriate action
– NM keeps track of each task running at its server

• If task fails while in-progress, mark the task as idle and restart it

– AM heartbeats to RM
• On failure, RM restarts AM, which then syncs it up with its

running tasks

• RM Failure
– Use old checkpoints and bring up secondary RM

• Heartbeats also used to piggyback container requests
– Avoids extra messages 23

Slow Servers
Slow tasks are called Stragglers

•The slowest task slows the entire job down (why?)
•Due to Bad Disk, Network Bandwidth, CPU, or Memory
•Keep track of “progress” of each task (% done)
•Perform proactive backup (replicated) execution of some straggler
tasks

– A task considered done when its first replica complete (other replicas can
then be killed)

– Approach called Speculative Execution.

24

Barrier at the end
of Map phase!

Locality
• Locality

– Since cloud has hierarchical topology (e.g., racks)
– For server-fault-tolerance, GFS/HDFS stores 3 replicas of each of chunks (e.g., 64

MB in size)
• For rack-fault-tolerance, on different racks, e.g., 2 on a rack, 1 on a different rack

– Mapreduce attempts to schedule a map task on
1. a machine that contains a replica of corresponding input data, or failing that,
2. on the same rack as a machine containing the input, or failing that,
3. Anywhere

– Note: The 2-1 split of replicas is intended to reduce bandwidth when writing
file.
• Using more racks does not affect overall Mapreduce scheduling performance

25

Mapreduce: Summary
• Mapreduce uses parallelization + aggregation to

schedule applications across clusters

• Need to deal with failure

• Plenty of ongoing research work in scheduling and
fault-tolerance for Mapreduce and Hadoop

26

Announcements
• MP Groups DUE TODAY 5 pm (see course webpage).

– Hard deadline, as Engr-IT will create and assign VMs tomorrow!
• Please fill out Student Survey by today (see course webpage).
• DO NOT

– Change MP groups unless your partner has dropped
– Leave your MP partner hanging: Both MP partners should contribute equally (we will

ask!)

• MP1 due Sep 17th

– VMs will be distributed soon (watch Piazza)
– Demos will be Monday Sep 18th (schedule and details will be posted before that on

Piazza)
• HW1 due Sep 26th

• Check Piazza often! It’s where all the announcements are at!
27

