
CS 425 / ECE 428
Distributed Systems

Fall 2017
Indranil Gupta (Indy)

Oct 24, 2017
Lecture 17: Leader Election

All slides © IG1

Why Election?

• Example 1: Your Bank account details are
replicated at a few servers, but one of
these servers is responsible for receiving
all reads and writes, i.e., it is the leader
among the replicas
• What if there are two leaders per customer?
• What if servers disagree about who the leader is?
• What if the leader crashes?

Each of the above scenarios leads to Inconsistency

2

More motivating examples

• Example 2: (A few lectures ago) In the
sequencer-based algorithm for total
ordering of multicasts, the “sequencer” =
leader

• Example 3: Group of NTP servers: who is
the root server?

• Other systems that need leader election:
Apache Zookeeper, Google’s Chubby

• Leader is useful for coordination among
distributed servers 3

Leader Election Problem

• In a group of processes, elect a Leader to
undertake special tasks
• And let everyone know in the group about this Leader

• What happens when a leader fails (crashes)
• Some process detects this (using a Failure Detector!)

• Then what?

• Focus of this lecture: Election algorithm. Its goal:
1. Elect one leader only among the non-faulty processes

2. All non-faulty processes agree on who is the leader
4

System Model

• N processes.
• Each process has a unique id.
• Messages are eventually delivered.
• Failures may occur during the election

protocol.

5

Calling for an Election

• Any process can call for an election.
• A process can call for at most one

election at a time.
• Multiple processes are allowed to call

an election simultaneously.
• All of them together must yield only a single

leader

• The result of an election should not
depend on which process calls for it.

6

Election Problem, Formally

• A run of the election algorithm must always
guarantee at the end:
Ø Safety: For all non-faulty processes p: (p’s elected = (q: a

particular non-faulty process with the best attribute value) or
Null)

Ø Liveness: For all election runs: (election run terminates)
& for all non-faulty processes p: p’s elected is not Null

• At the end of the election protocol, the non-
faulty process with the best (highest) election
attribute value is elected.
• Common attribute : leader has highest id
• Other attribute examples: leader has highest IP address, or fastest

cpu, or most disk space, or most number of files, etc.
7

First Classical Algorithm: Ring Election

• N processes are organized in a logical
ring
• Similar to ring in Chord p2p system
• i-th process pi has a communication channel to

p(i+1) mod N

• All messages are sent clockwise around the
ring.

8

The Ring

N80

N32

N5

N12

N6

N3

99

The Ring Election Protocol

• Any process pi that discovers the old coordinator has failed
initiates an “Election” message that contains pi ’s own
id:attr. This is the initiator of the election.

• When a process pi receives an “Election” message, it
compares the attr in the message with its own attr.
• If the arrived attr is greater, pi forwards the message.
• If the arrived attr is smaller and pi has not forwarded an election

message earlier, it overwrites the message with its own id:attr, and
forwards it.

• If the arrived id:attr matches that of pi, then pi’s attr must be the
greatest (why?), and it becomes the new coordinator. This process
then sends an “Elected” message to its neighbor with its id,
announcing the election result.

10

The Ring Election Protocol (2)

• When a process pi receives an “Elected” message, it
• sets its variable electedi ß id of the message.

• forwards the message unless it is the new coordinator.

11

Ring Election: Example

Initiates the election

Election: 3

Goal: Elect highest id process as leader

N80

N32

N5

N12

N6

N3

12

Initiates the election

Election: 32

Goal: Elect highest id process as leader

N80

N32

N5

N12

N6

N3

13

Initiates the election

Election: 32Goal: Elect highest id process as leader

N80

N32

N5

N12

N6

N3

14

Initiates the election

Election: 80

Goal: Elect highest id process as leader

N80

N32

N5

N12

N6

N3

15

Initiates the election

Election: 80

Goal: Elect highest id process as leader

N80

N32

N5

N12

N6

N3

16

Initiates the election

Election: 80

Goal: Elect highest id process as leader

N80

N32

N5

N12

N6

N3

17

Initiates the election

Election: 80
Goal: Elect highest id process as leader

N80

N32

N5

N12

N6

N3

18

Initiates the election

Elected: 80

Goal: Elect highest id process as leader

N80

N32

N5

N12

N6

N3

19

Initiates the election

Elected: 80

Goal: Elect highest id process as leader

N80

N32

N5

N12

N6

N3

elected = 80

20

Initiates the election

Elected: 80
Goal: Elect highest id process as leader

N80

N32

N5

N12

N6

N3

elected = 80

elected = 80

elected = 80

elected = 80

elected = 80

21

Initiates the election

Goal: Elect highest id process as leader

N80

N32

N5

N12

N6

N3

elected = 80

elected = 80

elected = 80

elected = 80

elected = 80elected = 80

22

Analysis

• Let’s assume no failures occur during the
election protocol itself, and there are N
processes

• How many messages?

• Worst case occurs when the initiator is the
ring successor of the would-be leader

23

Worst-case

Initiates the election

Goal: Elect highest id process as leader

N80

N32

N5

N12

N6

N3

24

Worst-case Analysis

• (N-1) messages for Election message to get from
Initiator (N6) to would-be coordinator (N80)

• N messages for Election message to circulate
around ring without message being changed

• N messages for Elected message to circulate around
the ring

• Message complexity: (3N-1) messages
• Completion time: (3N-1) message transmission

times
• Thus, if there are no failures, election terminates

(liveness) and everyone knows about highest-
attribute process as leader (safety)

25

Best Case?

• Initiator is the would-be leader, i.e., N80 is the
initiator

• Message complexity: 2N messages
• Completion time: 2N message transmission

times

26

Multiple Initiators?

• Include initiator’s id with all messages
• Each process remembers in cache the initiator

of each Election/Elected message it receives
• (All the time) Each process suppresses

Election/Elected messages of any lower-id
initiators

• Updates cache if receives higher-id initiator’s
Election/Elected message

• Result is that only the highest-id initiator’s
election run completes

• What about failures?

27

Effect of Failures

Initiates the election

Elected: 80

Crash
N80

N32

N5

N12

N6

N3

elected = 80

Election: 80 will
circulate around

the ring forever
=>
Liveness violated

28

Fixing for failures

• One option: have predecessor (or successor) of
would-be leader N80 detect failure and start a new
election run
• May re-initiate election if

• Receives an Election message but times out
waiting for an Elected message

• Or after receiving the Elected:80 message
• But what if predecessor also fails?
• And its predecessor also fails? (and so on)

29

Fixing for failures (2)

• Second option: use the failure detector
• Any process, after receiving Election:80

message, can detect failure of N80 via its own
local failure detector
• If so, start a new run of leader election

• But failure detectors may not be both complete
and accurate
• Incompleteness in FD => N80’s failure might be

missed => Violation of Safety
• Inaccuracy in FD => N80 mistakenly detected as

failed
• => new election runs initiated forever
• => Violation of Liveness

30

• Because it is related to the consensus problem!
• If we could solve election, then we could solve

consensus!
• Elect a process, use its id’s last bit as the consensus

decision
• But since consensus is impossible in asynchronous

systems, so is election!

• (later in lecture) Consensus-like protocols used in
industry for leader election

Why is Election so Hard?

31

Another Classical Algorithm: Bully Algorithm

• All processes know other process’ ids
• When a process finds the coordinator has failed

(via the failure detector):
• if it knows its id is the highest

• it elects itself as coordinator, then sends a
Coordinator message to all processes with lower
identifiers. Election is completed.

• else
• it initiates an election by sending an Election

message
• (contd.) 32

Bully Algorithm (2)

• else it initiates an election by sending an
Election message
• Sends it to only processes that have a higher id

than itself.
• if receives no answer within timeout, calls itself leader

and sends Coordinator message to all lower id
processes. Election completed.

• if an answer received however, then there is some
non-faulty higher process => so, wait for coordinator
message. If none received after another timeout, start
a new election run.

• A process that receives an Election message
replies with OK message, and starts its own
leader election protocol (unless it has already
done so)

33

Bully Algorithm: Example

N12

N5

N6

N80

N32

N3

Detects failure
of N80

34

N12

N5

N6

N80

N32

N3

Detects failure
of N80

Election

N12

N5

N6

N80

N32

N3

Waiting…

Election

OK

Election

N12

N5

N6

N80

N32

N3

OK

Waiting…Waiting…

N12

N5

N6

N80

N32

N3

Coordinator: N32

Times out
waiting for N80’s

response

Election is completed

Failures during Election Run

N12

N5

N6

N80

N32

N3

Waiting…Waiting…

N12

N5

N6

N80

N32

N3

Times out, starts
new election run

Waiting…

Election

OK

N12

N5

N6

N80

N32

N3

Times out, starts
another new election run

Election

Failures and Timeouts

• If failures stop, eventually will elect a leader
• How do you set the timeouts?
• Based on Worst-case time to complete election

• 5 message transmission times if there are no
failures during the run:
1. Election from lowest id server in group
2. Answer to lowest id server from 2nd

highest id process
3. Election from 2nd highest id server to

highest id
4. Timeout for answers @ 2nd highest id

server
5. Coordinator from 2nd highest id server

42

Analysis

• Worst-case completion time: 5 message transmission times
• When the process with the lowest id in the system

detects the failure.
• (N-1) processes altogether begin elections, each

sending messages to processes with higher ids.
• i-th highest id process sends (i-1) election messages

• Number of Election messages
= N-1 + N-2 + … + 1 = (N-1)*N/2 = O(N2)

• Best-case
• Second-highest id detects leader failure
• Sends (N-2) Coordinator messages
• Completion time: 1 message transmission time

43

Impossibility?

• Since timeouts built into protocol, in
asynchronous system model:
• Protocol may never terminate => Liveness

not guaranteed
• But satisfies liveness in synchronous system

model where
• Worst-case one-way latency can be

calculated = worst-case processing time +
worst-case message latency

44

Can use Consensus to solve Election

• One approach
• Each process proposes a value
• Everyone in group reaches consensus on

some process Pi’s value
• That lucky Pi is the new leader!

45

Election in Industry

• Several systems in industry use Paxos-like
approaches for election
• Paxos is a consensus protocol (safe, but

eventually live): earlier in this course
• Google’s Chubby system
• Apache Zookeeper

46

Election in Google Chubby

• A system for locking
• Essential part of Google’s stack

• Many of Google’s internal systems
rely on Chubby

• BigTable, Megastore, etc.

• Group of replicas
• Need to have a master server elected

at all times

Server A

Server B

Server C

Server D

Server EReference: http://research.google.com/archive/chubby.html

47

• Group of replicas
• Need to have a master (i.e., leader)

• Election protocol
• Potential leader tries to get votes from

other servers
• Each server votes for at most one

leader
• Server with majority of votes becomes

new leader, informs everyone

Server A

Server B

Server C

Server D

Server E

Master

Election in Google Chubby (2)

48

• Why safe?
• Essentially, each potential leader tries to

reach a quorum

• Since any two quorums intersect, and each
server votes at most once, cannot have two
leaders elected simultaneously

• Why live?
• Only eventually live! Failures may keep

happening so that no leader is ever elected

• In practice: elections take a few seconds.
Worst-case noticed by Google: 30 s

Server A

Server B

Server C

Server D

Server E

Master

Quorum

Election in Google Chubby (3)

49

• After election finishes, other servers promise
not to run election again for “a while”
• “While” = time duration called “Master lease”

• Set to a few seconds

• Master lease can be renewed by the master
as long as it continues to win a majority each
time

• Lease technique ensures automatic re-
election on master failure

Server A

Server B

Server C

Server D

Server E

Master

Quorum

Election in Google Chubby (4)

50

Election in Zookeeper

• Centralized service for maintaining
configuration information

• Uses a variant of Paxos called Zab (Zookeeper
Atomic Broadcast)

• Needs to keep a leader elected at all times

• http://zookeeper.apache.org/

51

Election: Summary

• Leader election an important component of
many cloud computing systems

• Classical leader election protocols
• Ring-based
• Bully

• But failure-prone
• Paxos-like protocols used by Google

Chubby, Apache Zookeeper

52

