Motivation

- Many important applications must process large streams of live data and provide results in near-real-time
 - Social network trends
 - Website statistics
 - Intrusion detection systems
 - etc.

- Require large clusters to handle workloads

- Require latencies of few seconds
Traditional Solutions (Map-Reduce)

- No partial answers
 - Have to wait for the entire batch to finish

- Hard to configure when we want to add more nodes.
The Need for New Framework

- Scalable
- Second-scale
- Easy to program
- “Just” works
 - Adding/removing nodes should be transparent
Enter Storm

- Open-sourced at http://storm-project.net/

- Most watched JVM project

- Multiple languages API supported
 - Python, Ruby, Fancy

- Used by over 30 companies including
 - Twitter: For personalization, search
 - Flipboard: For generating custom feeds
Storm’s Terminology

- Tuples
- Streams
- Spouts
- Bolts
- Topologies
Tuples

- Ordered list of elements
 - E.g. [“Illinois”, “somebody@illinois.edu”]
Streams

Unbounded sequence of tuples
Source of streams (E.g. Web logs)
Bolts

Processes tuples and create new streams
• Operations that can be performed
 – Filter
 – Joins
 – Apply/transform functions
 – Access DBs
 – Etc

• Could specify amount of parallelism in each bolt
 – How to decide which task in bolt to route subset of the streams to?
Streams Grouping in Bolts

• **Shuffle Grouping**
 – Streams are randomly distributed from to the bolt’s tasks

• **Fields Grouping**
 – Lets you group a stream by a subset of its fields (Example?)

• **All Grouping**
 – Stream is replicated across all the bolt’s tasks (Example?)
Topologies

A directed graph of spouts and bolts
Word Count Example (Main)

```java
TopologyBuilder builder = new TopologyBuilder();

builder.setSpout("spout", new RandomSentenceSpout(), 5);

builder.setBolt("split", new SplitSentence(), 8).shuffleGrouping("spout");
```
public class RandomSentenceSpout extends BaseRichSpout {
 SpoutOutputCollector _collector;
 Random _rand;

 @Override
 public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {
 _collector = collector;
 _rand = new Random();
 }

 @Override
 public void nextTuple() {
 Utils.sleep(100);
 String[] sentences = new String[] { "the cow jumped over the moon", "an apple a day keeps the doctor away", "four score and seven years ago", "snow white and the seven dwarfs", "i am at two with nature" };
 String sentence = sentences[_rand.nextInt(sentences.length)];
 _collector.emit(new Values(sentence));
 }

 @Override
 public void ack(Object id) {
 }

 @Override
 public void fail(Object id) {
 }

 @Override
 public void declareOutputFields(OutputFieldsDeclarer declarer) {
 declarer.declare(new Fields("word"));
 }
}
public static class WordCount extends BaseBasicBolt {
 Map<String, Integer> counts = new HashMap<String, Integer>();

 @Override
 public void execute(Tuple tuple, BasicOutputCollector collector) {
 String word = tuple.getString(0);
 Integer count = counts.get(word);
 if (count == null)
 count = 0;
 count++;
 counts.put(word, count);
 collector.emit(new Values(word, count));
 }

 @Override
 public void declareOutputFields(OutputFieldsDeclarer declarer) {
 declarer.declare(new Fields("word", "count"));
 }
}
LocalCluster cluster = new LocalCluster();
cluster.submitTopology("word-count", conf, builder.createTopology());
Storm Cluster

- **Master node**
 - Runs a daemon called Nimbus
 - Responsible for distributing code around cluster
 - Assigning tasks to machines
 - Monitoring for failures

- **Worker node**
 - Runs a daemon called Supervisor
 - Listens for work assigned to its machines

- **Zookeeper**
 - Coordinates Nimbus and Supervisors communication
 - All state of Supervisor and Nimbus is being kept here
Guaranteeing Message Processing

• When spout produces tuples, the followings are created:
 – Tuple for each word in the sentence
 – Tuple for the updated count for each word

• A tuple is considered failed when its tree of messages fails to be fully processed within a specified timeout
Anchoring

- When a word is being anchored, the spout tuple at the root of the tree will be replayed later on if the word tuple failed to be processed downstream
 - Might not necessarily want this feature

- An output can be anchored to more than one input tuple
 - Failure of one tuple causes multiple tuples to be replayed
Miscellaneous for Storm’s Reliability API

- **Emit(tuple, output)**
 - Each word is anchored if you specify the input tuple as the first argument to emit
- **Ack(tuple)**
 - Acknowledge that you finish processing a tuple
- **Fail(tuple)**
 - Immediately fail the spout tuple at the root of tuple tree if there is an exception from the database, etc
- **Must remember to ack/fail each tuple**
 - Each tuple consume memory. Failure to do so results in memory leaks
What’s wrong with Storm?

• Mutable state can be lost due to failure!
 – May update mutable state twice!
 – Processes each record at least once

• Slow nodes?
 – No notion of time slices
Enter Spark Streaming

- Research project from AMPLab Group at UC Berkeley

- A follow-up from Spark research project
 - Idea: cache datasets in memory, dubbed Resilient Distributed Datasets (RDD) for repeated query
 - Able to perform 100 times faster than Hadoop MapReduce for iterative machine learning applications
Discretized Stream Processing

- Run a streaming computation as a series of very small, deterministic batch jobs

- Chop up the live stream into batches of X seconds

- Spark treats each batch of data as RDDs and processes them using RDD operations

- Finally, the processed results of the RDD operations are returned in batches
Discretized Stream Processing (Continued)

- Run a streaming computation as a series of very small, deterministic batch jobs

 - Chop up the live stream into batches of X seconds
 - Spark treats each batch of data as RDDs and processes them using RDD operations
 - Finally, the processed results of the RDD operations are returned in batches
Effects of Discretization

• (+) Easy to maintain consistency
 – Each time interval is processed independently
 » Especially useful when you have stragglers (slow nodes)
 » Not handled in Storm

• (+) Handle out-of-order records
 – Can choose to wait for a limited “slack time”
 – Incrementally correct late records at application level

• (+) Parallel recovery
 – Expose parallelism across both partitions of an operator and time

• (-) Raises minimum latency
Fault-tolerance in Spark Streaming

- RDDs are remember the sequence of operations that created it from the original fault-tolerant input data (Dubbed “lineage graph”)

- Batches of input data are replicated in memory of multiple worker nodes, therefore fault-tolerant

- Data lost due to worker failure, can be recomputed from input data
Fault-tolerant Stateful Processing

- State data not lost even if a worker node dies
 - Does not change the value of your result

- Exactly once semantics to all transformations
 - No double counting!

- Recovers from faults/stragglers within 1 sec
Comparison with Storm

- Higher throughput than Storm
 - Spark Streaming: 670k records/second/node
 - Storm: 115k records/second/node
More information

- **Storm**
 - https://github.com/nathanmarz/storm/wiki/Tutorial
 - https://github.com/nathanmarz/storm-starter

- **Spark Streaming**

- **Other Streaming Frameworks**
 - Yahoo S4
 - LinkedIn Samza