
CS425/CSE424/ECE428 — Distributed Systems — Fall 2011

Machine Problem 1 — Multicast

Due: October 7, 2011, 5 p.m.

Your goal will be to create a distributed chat system. Each process will take input messages
from a user and then multicast them to other processes. It will also receive messages received via
multicast from other users and display them to the user. Your job will be to ensure reliable and
ordered transmission in the face of an unreliable network and process failures.

You will be writing a reliable, ordered multicast protocol. As such, you have to implement the
multicast interface; in particular, the multicast protocol must support the multicast(message) call
to send a message to a multicast group and deliver(source,message) to deliver a message (labeled
with its source) to the process. Your protocol can make use of a basic unicast send protocol:
usend(destination,message) and receive(source,message). Note that deliver and receive act as
callbacks.

Requirements

Your multicast implementation must have the following properties:

• Causal ordering. The messages must be delivered to each process respecting causal order-
ing. Recall that for causal ordering, the relevant events are calls to multicast and deliver.
We recommend that you follow the vector timestamp algorithm in the textbook.

• Reliable multicast. Your multicast must ensure the three reliable multicast conditions
(integrity, validity, and agreement). Note that we will give points for efficiency of your
implementations, so a solution such as the reliable multicast algorithm in Figure 12.10 (4th
ed.) / 15.9 (5th ed.) in the text will not get full credit. We recommend that you incorporate
ideas from the piggybacked acknowledgment algorithm described in the text instead.

• Failure detection. You should implement failure detection to ensure that the multicast
algorithm proceeds correctly even if some of the processes crash. You should implement a
failure detector and use it to modify your algorithm for causal ordering. You may want to
create an extra thread for sending periodic heartbeat / ping messages.

You will be expected to hand in a design document that describes the algorithms you used to im-
plement the above functionality and how you made particular design choices. Your implementation
code should be well documented and will be graded for clarity.

Skeleton Code

You will be given a skeleton implementation of the chat program, composed of 3 source files. chat.c
will implement the user interface for obtaining input from the user and displaying messages from
others; it will use the multicast implementation in mcast.c. The skeleton multicast implemen-
tation will implement basic multicast (B-multicast), using unicast send functionality provided by
unicast.c. The initial implementation of unicast send provides reliable and ordered delivery of
messages, but we will provide you with an implementation that introduces delays and loses messages
for testing. The implementation can be found in /class/ece428/mp1 on the EWS machines.

To run the code, first copy the implementation into your directory and then build the program
using ‘make’:

1



$ cd

$ cp -r /class/ece428/mp1 .

$ cd mp1

$ make

You can then run instances of the chat program by typing ‘./mp1’. You can run multiple
instances in different terminal windows; the underlying code will automatically discover other
group members. Note that for this to work, all instances must be running in the same directory
and on the same host. (In particular, if you are using remlnx.ews, take care that your terminal
windows do not get mapped to different hosts, e.g., linux1 and linux3.) You can type messages
in one instance and observe that they are displayed in all others.

When you are finished, you can type ‘/quit’ in each instance. You should also delete the file
GROUPLIST that is used internally to keep track of multicast members.

You should modify only mcast.c; the interface and unicast implementation should be left as is.
This will ensure that we can test your code properly.

Handing In

To hand in your code, you will need to run ‘/class/ece428/Handin/handin 1’ from inside your
mp1 directory. Please run ‘make clean’ in your directory so that you are only submitting source
files. Place a copy of your design document, called ‘design.pdf’ in your mp1 directory.

You may run hand in multiple times until the deadline; we will grade the latest submission.
Submissions after the deadline will not be allowed. Only one submission per group is necessary.

Grading Scheme

• Design document — 20 pts.

• Functionality — 70 pts.
Your functionality will be tested in the following scenarios:

– Single node — 10 pts.

– Reliable, ordered network – 10 pts.

– Reliable, but out-of-order network – 10 pts.

– Unreliable, but in-order network – 10 pts.

– Process failures on reliable, in-order network – 10 pts.

– Full functionality – 20 pts.

• Code clarity, documentation — 10 pts.

2


