1a) 1b)

Finger Table					
Entry no.					
0	1	2	3	4	5
16	16	16	16	40	40
40	40	40	40	40	50
50	50	50	50	60	16
60	60	60	60	5	40
5	5	5	5	16	40
	16 40 50 60	0 1 16 16 40 40 50 50 60 60	0 1 2 16 16 16 40 40 40 50 50 50 60 60 60	Entry no. 0 1 2 3 16 16 16 16 40 40 40 40 50 50 50 50 60 60 60 60	Entry no. 0 1 2 3 4 16 16 16 16 40 40 40 40 40 40 50 50 50 50 60 60 60 60 60 5

1c)

We accepted any of the following two answers:

- 1. Average size of a finger table is $log_2N = log_25 \sim 3$
- 2. Average size of a finger table (in this example) is = (2+2+2+3+3)/5 = 13/5 = 2.6

1d)

Node 5 stores the file with ID 0. The steps (16 - 50 - 60 - 5) are shown in the figure.

1e)

The file with ID 0 is moved from node 5 to node 4 since files with IDs $61\sim4$ now belong to node 4 instead of node 5.

Some of you mentioned about successor and predecessor. You got 1 point if you mentioned successor of 60 is 4 and successor of 4 is 5, and predecessor of 5 is 4 and predecessor of 4 is 60.

2)

Event	Concurrent Event(s)
1	4
2	4, 7, 8
3	5, 6, 7, 8
4	1, 2, 7, 8
5	3, 7, 8
6	3
7	2, 3, 4, 5
8	2, 3, 4, 5

3)

The conditions were taught in class. Each condition has two points, and you got 1 point for each.

- Safety: ∀ non-faulty process p: (p's elected = (q: a particular non-faulty process with the best attribute value) or ⊥)
- Liveness: \forall election: (election terminates) & \forall p : non faulty process, p's elected is not \bot

4)

Assume external clock is at S(t), and two physical clocks read $C_1(t)$ and $C_2(t)$. Since $C_1(t)$ and $C_2(t)$ are externally synchronized within bound D>0, in the worst case one of them can be at +D and one of them can be at -D.

Assume

$$C_1(t) = S(t) + D \dots \dots (1)$$

$$C_2(t) = S(t) - D \dots (2)$$

Hence, (1) - (2)

$$C_1(t) - C_2(t) = 2D$$

Similarly, it can be shown that $C_1(t) - C_2(t) = -2D$

Therefore $C_1(t)$ and $C_2(t)$ can be maximum 2D apart from each other.

So,
$$|C_1(t) - C_2(t)| < 2D$$

We also accepted your answer if you just explained the above in words.

5)

The actual time can be anytime between (T+min2) or (T + (RTT-min1)), where T is

6:00PM, RTT is 7 sec, min1=2sec (the minimum one way transmission time from client to server), and min2=1sec(the minimum one way transmission time from server to client).

The two extremes are:

$$(6:00+1 \text{ sec}) = 6:00:01 \text{ PM}$$
 and

$$(6:00+(7-2) sec) = 6:00:05 PM$$

The client sets its time to the mid point of the two extremes, i.e.,

$$(6:00:05 + 6:00:01)/2$$

$$= 6:00:03 PM$$

6a) False. The following figure is a counter example.

- **6b)** True. The reason is that every process i increments the i th element of its vector upon send or receive event. Also, in receiving a message from process $j \neq i$, $V_{\text{receiver}}[j]$ is set to $Max(V_{\text{receiver}}[j], V_{\text{message}}[j])$. In this way, events are always assigned different vector timestamps.
- **6c)** False. The following figure shows a counter example, in which causal ordering is satisfied, while total ordering is violated. In this figure, A->B and every process delivers A first and then B. So, it satisfies causal ordering. But it violates total ordering, since P1 delivers B first and then C, while p2 delivers C before B.

Physical Time

- **7) (a)** 1-6, 4-5, and 7-8.
- **(b)** No. You can reorder 4 and 5 and that would work.
- **(c)** Transaction X would block acquiring a write lock on C at step 5
- **(d)** Yes, deadlock would occur. At step 6, transaction Y would wait for a write lock on A, while X is waiting for a lock on C.

8) Preconditions are:

- Exclusive access to a resource
- Circular wait
- No preemption

Edge-chasing violates no preemption because it aborts a transaction once a cycle has been found.