Problem 1
Suppose that we want to build a synchronous system of \(n \) nodes that can achieve Byzantine agreement in the presence of \(f \) Byzantine failure and \(t \) crash failure.

1. What is the minimum number of nodes required to achieve Byzantine agreement? Explain your answer.

2. Assume \(f = 1 \) and \(t = 1 \). Explain why at least 3 rounds are necessary to achieve Byzantine agreement in this case.

Problem 2
State true or false with an explanation: If a sequentially consistent shared memory contains only 1 variable, then it is also a linearizable shared memory.

Problem 3
(Question 18.13 from the textbook-5th edition) In a gossip system, a front end has a timestamp (3,5,7) representing the data it has received from members of a group of three replica managers. The tree replica managers have vector timestamps (4,2,8), (4,5,6) and (4,5,8), respectively. Which replica managers could immediately satisfy a query from the front end, and what would the resultant timestamp of the front end be? Which could incorporate an update from the front end immediately?

Problem 4
Why Gossip-based system is not appropriate for updating replicas in near-real time? Provide an alternative approach.

Problem 5
In a replication system, the total number of servers is 4. 2 servers have an independent probability \(p = 0.3 \) of failing each, the 3rd server has \(p = 0.5 \) and the last one has \(p = 1 \). What is the availability of an object stored at each of these servers?