
Problem 1

Consider a group of distributed processors P1, P2, P3, and P4 that use the Ricarti-Agrawala algorithm for
ensuring mutual exclusion. Assume that P4 is currently in the critical section and there is no other node in
the WANTED state. Now consider requests from P1 and P2 (in that order) to enter the Critical Section.

1. Show the state and queue entries at each processor.

2. Now, P4 exits the CS and informs all relevant nodes that CS is released. Show the state and queue
entries at each processor, at this stage.

Answer:
1)
P1: wanted, Queue1 = {P2}
P2: wanted, Queue2 = {}
P3: released, Queue3 = {}
P4: held, Queue4 = {P1, P2}
2)
P1: held, Queue1 = {P2}
P2: wanted, Queue2 = {}
P3: released, Queue3 = {}
P4: released, Queue4 = {}

Problem 2

In a certain system, each process typically uses a critical section many times before another process requires
it. Explain why Ricart and Agrawala’s multicast-based mutual exclusion algorithm is inefficient for this case,
and describe how to improve its performance. Does your adaptation satisfy liveness condition in ME2 ?
(Problem 15.7 in the 5th edition)

Answer: Ricart and Agrawala’s algorithm multicast-based algorithm multicasts requests, and requires
reply from all other processes before entering a critical section, which is expensive when one process needs
several access to the critical section before any other process requests for it.

One possible solution is to change the state from HELD to TEMP instead of RELEASE when the
process is done with the critical section. If it needs access again, it can change the state from TEMP to
HELD without sending multicast message.

To satisfy ME2 the process has to change state TEMP to RELEASE if there is any request for the critical
section, i.e., its queue is not empty.

Problem 3

Is leader election possible in a synchronouse ring in which all but one processor have the same identifier?
Either give an algorithm or prove an impossibility result.

Answer: Yes, it is possible, since one of the processors has an id which is different from every other
processors id. We can propose different algorithms to choose the process with different id as the leader. One
possible algorithm is algorithm 1. We assume no failures happen.

Page 1 of 3



Problem 3

1 Leader election
1: To start election
2: send (election, my ID) to the left and right processors in the ring
3: When receiving message (election,id) from both left and right neighbors
4: if my ID is not equal to any of my two neighbors id then
5: I am selected as the leader
6: send (elected,my ID) to my right neighbor
7: end if
8: (elected,id) is forwarded clockwise in the ring until it comes back to leader (to inform every processor

which processor is the leader)

Problem 4

Suggest how to adapt the bully algorithm to deal with temporary network partitions (slow communication)
and slow processes. (Problem 15.9 in the 5th edition)

Answer: In case of network partitions, subgroups will be formed. Each subgroup can run Bully algorithm
and elect a coordinator with the highest ID in the subgroup. When the network heals, the subgroups should
merge and elect one coordinator with the highest ID.

Problem 5

Modify the basic ring-based leader election algorithm to elect 2 leaders (two processes with the highest IDs).
Answer: To start an election, a process sends a message < election > with its ID appended. Each node

that receives this message appends its ID to it. Once the election message reaches the initiator after going
through the circle, the top two nodes (nodes with the highest and second highest IDs ) are selected, and
a message < choose : highest1, highest2 > is sent with the initiator’s ID appended to it. Each node that
receives this message appends its ID again. When this message reaches the initiator, if the appended ID list
contains the top two nodes, then the election is successful and ends. Otherwise, a new election is initiated.

Problem 6

Consider a synchronous system in which processors fail only by crash failure, with the additional constraint
that the crash is always clean, that is, in a round, a processor either sends all its messages or none.

1. For this system, design an algorithm that solves the consensus problem in the least possible number of
rounds.

2. Explain why your algorithm is correct.

2 Consensus
1: Initially V alues = {vi}
2: for one round do
3: multicast vi (processor’s value)
4: for each vj received do
5: V alues = V alues ∪ vj

6: end for
7: end for
8: yp = min(V alues)

Answer:

Problem 6 continued on next page. . . Page 2 of 3



Problem 6 (continued)

1) Algorithm 2 solves the consensus problem in one round.

2) Since the crash is clean, after the first round, if a process i gets a value from process j, every other
process k (k 6= i) gets value of process j as well. Furthermore, if a process i does not get anything from
process j, no other process k (k 6= i) has value of process j. So, at the end of one round, all fault-free
processes have received the same set of values. (There is no need for more rounds to exchange values among
fault-free processes.)

Page 3 of 3


