
Homework 5
CS425/ECE428 Spring 2024

Due: Wednesday, April 24 at 11:59 p.m.

1. Two phase commit and Paxos . 14 points
In Spanner and similar systems, a combination of two-phase commit (2PC) and Paxos protocols are
used. Both the coordinator and participants in 2PC are implemented as replica groups, using Paxos
to achieve consensus in the group. Each replica group has a leader, so during 2PC, the leader of the
coordinator group communicates with the leaders of the participant groups.

During the execution of 2PC in such a system, there are three points at which a consensus must be
achieved within the nodes in a replica group for a transaction to be committed: (i) at each participant
group to prepare for a commit, (ii) at the coordinator to decide on a commit after receiving a vote from
each participant, and (iii) at each participant again to log the final commit.

Suppose that there is one coordinator and three participants. Each of these has a Paxos replica group
with six nodes. The leader of each replica group also acts as the proposer and the distinguished learner
for the Paxos protocol, while the remaining five nodes are acceptors (the leader sends its prepare and
accept messages to all five acceptors). The leaders of the participant and the coordinator replica groups
send appropriate messages for 2PC to one another once consensus has been achieved (a decision has been
reached) in their respective replica groups. Assume for simplicity that the coordinator replica group only
coordinates the transaction and does not participate in processing the transaction (so the coordinator
leader need not send prepare and commit messages to itself during 2PC).

The communication latency between each pair of nodes within each group is exactly 10ms and the
communication latency between any pair of nodes in two different groups is exactly 30ms. The processing
latency at each node is negligible.

Answer the following questions assuming that there are no failures or lost messages. Further assume
that the leader of each replica group has already been elected / pre-configured. All participant groups
are willing to commit the transaction, and all nodes within each replica group are completely in sync
with one-another.

(a) (6 points) With this combined 2PC / Paxos protocol,

(i) what is the minimum amount of time it would take for each node in the participant group to
commit a transaction after the leader of the coordinator group receives the “commit” command
from the client? (2 points)

(ii) how many messages are exchanged in the system before all nodes in the participant groups
commit the transaction? (Ignore any message that a process may send to itself). (4 points)

[Hint: Think about the message exchanges required by each protocol (2PC and Paxos). Are there
messages that can be safely sent in parallel to reduce the commit latency?]

(b) (2 points) What is the earliest point at which the coordinator group’s leader can safely tell the
client that the transaction will be successfully committed? Calculate the latency until this point
(from the time since the leader of the coordinator group receives the “commit” command from the
client).

(c) (6 points) Suppose we re-configure the system such that the leader of the coordinator group also
acts as the leader (proposer and distinguished learner) for the participant Paxos groups. Five nodes
in each participant group continue to be acceptors. The original leader within each participant
replica group simply acts as a learner (and is no longer the leader/proposer/distinguished learner).
With this modification:

(i) what is the minimum time it takes for each node in the participant group to commit a transac-
tion after the leader of the coordinator group receives the “commit” command from the client?
(2 points)

(ii) how many messages are exchanged in the system before all nodes in the participant groups
commit the transaction? (Ignore any message that a process may send to itself). (4 points)

2. DHT . 16 points
Consider a Chord DHT with a 16-bit address space and the following 100 nodes (hexadecimal values in
parentheses).

834 (342), 1847 (737), 2180 (884), 4562 (11d2),

4883 (1313), 5579 (15cb), 6016 (1780), 6134 (17f6),

6351 (18cf), 7576 (1d98), 9379 (24a3), 9916 (26bc),

10023 (2727), 10111 (277f), 10336 (2860), 10967 (2ad7),

11053 (2b2d), 11101 (2b5d), 11967 (2ebf), 12721 (31b1),

12972 (32ac), 12982 (32b6), 14007 (36b7), 14305 (37e1),

16121 (3ef9), 16641 (4101), 17460 (4434), 17949 (461d),

18572 (488c), 18622 (48be), 19963 (4dfb), 20012 (4e2c),

20368 (4f90), 20721 (50f1), 21251 (5303), 21422 (53ae),

22213 (56c5), 24052 (5df4), 25092 (6204), 28927 (70ff),

29112 (71b8), 30656 (77c0), 31428 (7ac4), 32083 (7d53),

32199 (7dc7), 32403 (7e93), 32753 (7ff1), 33876 (8454),

35527 (8ac7), 36849 (8ff1), 37774 (938e), 38193 (9531),

39091 (98b3), 39606 (9ab6), 40067 (9c83), 41627 (a29b),

42532 (a624), 42784 (a720), 43304 (a928), 43590 (aa46),

43935 (ab9f), 43968 (abc0), 44644 (ae64), 44673 (ae81),

44686 (ae8e), 45039 (afef), 46261 (b4b5), 46306 (b4e2),

46685 (b65d), 47254 (b896), 47478 (b976), 48441 (bd39),

48680 (be28), 48694 (be36), 49660 (c1fc), 49844 (c2b4),

50197 (c415), 51425 (c8e1), 52368 (cc90), 52848 (ce70),

53684 (d1b4), 55038 (d6fe), 55264 (d7e0), 55393 (d861),

55556 (d904), 56344 (dc18), 56740 (dda4), 58569 (e4c9),

58641 (e511), 60436 (ec14), 60597 (ecb5), 60599 (ecb7),

62458 (f3fa), 62795 (f54b), 62930 (f5d2), 64744 (fce8),

65011 (fdf3), 65217 (fec1), 65424 (ff90), 65454 (ffae),

For programmatic computations, these numbers have also been made available at:
https://courses.grainger.illinois.edu/ece428/sp2024/assets/hw/hw5-ids.txt

(a) (6 points) List the fingers of node 24052.

(b) (6 points) List the nodes that would be encountered on the lookup of the following keys by node
24052:

(i) 36918

(ii) 19834

(c) (4 points) A power outage takes out a few specific nodes: the ones whose identifiers are even
numbers. Assume that each node maintains only one successor, and no stabilization algorithm has
had a chance to run, so the finger tables have not been updated. When a node in the normal
lookup protocol tries to contact a finger entry that is no longer alive (i.e. its attempt to connect
with that node fails), it switches to the next best option in its finger table that is alive. Under these
conditions, will a lookup of the key 51039 by node 16641 be successful? If yes, list the nodes that
16641 would contact. If not, explain why.

Page 2

3. MapReduce . 6 points

(a) (6 points) Given three vectors V1, V2, and V3 each having a dimension of N . Use a map-reduce
chain to compute the dot product of (V1 +V2) and V3. The input to the map-reduce chain is in the
following key-value format: (k, v), with k = (i, n), where i ∈ [1, N] is the index of the vector Vn,
and v is the corresponding value (Vn[i]). The output of your map-reduce chain must of the form
(-, final result). Assume there are 100 nodes (or servers) in your cluster. Your map-reduce chain
must support proper load-balancing across these nodes. In particular, assuming a vector dimension
of 5000, ensure that a single node is not required to handle more than ≈150 values at any stage.
You can assume that, if allowed by your map-reduce semantics, the underlying framework perfectly
load-balances how different keys are sent to different nodes. Also explain what aspect of your
map-reduce chain allows it to satisfy this load-balancing requirement.

4. Dominant Resource Fair Scheduling . 4 points

(a) (4 points) Consider two cloud jobs, Job 1 and Job 2. Each task of Job 1 requires 5 units of
CPU and 10MB RAM. Each task of Job 2 requires 2 units of CPU and 30MB RAM. You need
to schedule these jobs on a system with 60 units of CPU and 300MB RAM using the dominant
resource fairness criteria. How many tasks for each job will you schedule to maximize resource
utilization while achieving dominant resource fairness (to the best extent possible)?

Note that you cannot schedule fractional tasks. The unfairness introduced due to rounding the
number of tasks to integer values can be ignored.

Page 3

