
Homework 2
CS425/ECE428 Spring 2024

Due: Wednesday, Mar 6 at 11:59 p.m.

Process ID Time when “enter” is
called (since start of

system)

Time spent in critical
section after “enter”
returns, before calling

“exit”
P1 10ms 50ms
P2 200ms 30ms
P3 25ms 10ms
P4 5ms 20ms
P5 105ms 5ms

Table 1: Timings for Q1

1. Consider a distributed system of five processes {P1, P2, P3, P4, P5}. Each process needs mutually exclu-
sive access to a critical section. Assume that each process wishes to enter a critical section only once.
Table 1 lists the time when each process first makes a blocking call to “enter” the critical section (since
the start of the system). It also lists the time each process spends in the critical section after “enter”
succeeds, before calling “exit”.

For each of the subparts below, assume that the one-way network delay between any two different
processes is fixed at 10ms (i.e. it takes exactly 10ms for a message to go from Pi to Pj , when i ̸= j). The
network delay for any message that a process Pi sends to itself is zero. Other than the network delays
and the time spent in critical section, assume all other processing takes negligible amount of time.

(a) (5 points) Suppose the system uses the central server algorithm for mutual exclusion, electing P3

as the leader. The leader grants requests in the order in which it receives them. When will each
process start executing its critical section?

(b) (5 points) Now suppose that the system uses ring-based algorithm for mutual exclusion, with the
ring structured as shown below (P1 to P2 to P3 to P4 to P5 to P1).

P1

P2

P4 P3

P5

Figure 1

At time 0ms (when the system starts up), the token is at P1. As specified above, the network delay
for passing the token from a given process to its ring successor is 10ms. When will each process
start executing its critical section?

(c) (5 points) Now suppose the processes use the Ricart-Agrawala algorithm for mutual exclusion.
Assume all processes start off with a Lamport timestamp of zero, and no other events occur at
the processes outside of the events that are part of the algorithm. When will each process start
executing its critical section?



2. Consider a system of 6 processes {N1, N2, N3, N4, N5, N6} with ids 1 to 6 (i for Ni). The system
uses the ring-based algorithm for leader election, with the six processes arranged in a ring as shown
below. The leader election algorithm uses the optimization proposed by Chang & Roberts to reduce the
number of messages passed around the ring when multiple processes initiate the election. The process
with highest id must be elected as the leader (which is N6 in this case). It is given that no process fails
and no messages are dropped. The time taken to transmit a message from a process to its ring successor
is exactly 20ms, and the processing time at each process is negligible.

N1

N4

N3

N2 N6

N5

If processes N2 and N4 initiate the election simultaneously (at exactly the same time),

(a) (2 points) what is the total number of messages that get exchanged before N2 sets N6 as its elected
leader?

(b) (2 points) how long does it take for N2 to set N6 as its elected leader after N2 and N4 initiate the
election?

3. Consider the following modification of the Bully algorithm: The initiating node (which we assume does
not fail) sends an Election message only to the process with the highest id. If it does not get a response
after a timeout, it then sends an Election message to the process with the second highest id. If after
another timeout it gets no response, it tries the third highest id, and so on. If no higher numbered
processes respond, it sends a Coordinator message to all lower-numbered processes.

(a) (1 point) What should a process do when it receives an Election message in order to minimize
turnaround time?

For the following parts, consider a distributed system of 7 processes {P1, P2, . . . P7}. P7 has the
highest id, followed by P6, then P5, and so on. The system uses the modified Bully algorithm
for leader election (including the solution for 3a). Initially, all 7 processes are alive and P7 is the
leader. Then P7 fails, P3 detects this, and initiates the election. P3 knows that P7 has failed and
P6 has the highest id among the remaining processes. Assume one-way message transmission time
between any two processes is fixed at 20ms, and timeout is set using the knowledge of this message
transmission time.

(b) (1 point) If no other node fails during the election run, how many total messages will be sent by
all processes in this election run?

(c) (1 point) If no other node fails during the election run, how long will it take for the election to
finish?

(d) (1 point) Now assume that right after P3 detects P7’s failure and initiates the election, P6 fails.
How many total messages will be sent by all processes in this election run?

(e) (1 point) For the above scenario (where P6 fails right after P3 initiates election upon detecting P7’s
failure), how long will it take for the election to finish?

Page 2



4. Consider a system of six processes [P1, P2, P3, P4, P5, P6]. Each process Pi proposes a value xi. Let
x1 = 10, x2 = 8, x3 = 5, x4 = 12, x5 = 15, x6 = 6.

Each process Pk must decide on an output variable yk (initialized to undecided), setting it to one of the
proposed values xi for i ∈ [1, 6]. The safety condition requires that at any point in time, for any two
processes Pj and Pk, either yj or yk is undecided, or yj = yk (in other words, the decided value must be
same across all processes that have decided).

A consensus algorithm is designed for the above problem that works as follows:

• Each process R-multicasts its proposed value at the same time t = 0ms since start of the system
(as per their local clocks).

• As soon as proposed values from all 6 processes are delivered at a process Pj , Pj sets yj to the
maximum of the proposed values it received from the six processes.

• If yj is still undecided at time (t+ timeout), Pj computes the maximum of the proposed values it
has received so far and sets yj to that value.

• Once a process Pj decides on yj , it does not update yj ’s value, and ignores future proposals (if any
are received).

Assume that all clocks are perfectly synchronized with zero skew with respect to one-another. The
proposed value xi of a process Pi gets self-delivered immediately at time t = 0ms when Pi begins the
multicast of xi. A message sent from a process to any other process takes exactly T = 10ms (and this
value is known to all processes). All communication channels are reliable. Processes may fail, but a
failed process never restarts.

Suppose the timeout value for the above algorithm is set to 25ms. Answer the following questions with
respect to local time at the processes’ clock since the start of the system.

(a) (1 point) Assume no process fails in the system. When will each process decide on a value and
what will each of their decided values be?

(b) (1 point) Assume P5 fails right after unicasting x5 to P2 and P6 but just before it could initiate
the unicast of x5 to any of the other processes. When will each of the alive processes decide on a
value and what will each of their decided values be?

(c) (2 points) Assume P5 fails at right after unicasting x5 to P2 but just before it could initiate the
unicast of x5 to any of the other processes. P2 fails right after issuing unicast of x5 to P6 but just
before it unicasts it to any other process. When will each of the alive processes decide on a value
and what will each of their decided values be?

(d) (2 points) Assume P5 fails at right after unicasting x5 to P2 but just before it could initiate the
unicast of x5 to any of the other processes. P2 fails right after issuing unicast of x5 to P6 but just
before it unicasts it to any other process. Then P6 fails right after issuing unicast of x5 to P1 but
just before it unicasts it to any other process. When will each of the alive processes decide on a
value and what will each of their decided values be?

(e) (2 points) Assume P4 fails right before it could unicast x4 to any process. P5 fails right after
unicasting x5 to P2 but just before it could initiate the unicast of x5 to any of the other processes.
P2 fails right after issuing unicast of x5 to P6 but just before it unicasts it to any other process.
When will each of the remaining alive processes decide on a value and what will each of their decided
values be?

(f) (2 points) What is the smallest value that the timeout should be set to for ensuring safety in this
system?

(g) (2 points) Answer Q4c assuming that the timeout is updated to the value in Q4f.

(h) (2 points) Answer Q4d assuming that the timeout is updated to the value in Q4f.

(i) (2 points) Answer Q4e assuming that the timeout is updated to the value in Q4f.

Page 3


