Exact Schedulability Test

Tarek Abdelzaher
The 4th Credit Project
(Suggested: 1-2 persons per project)

- Option 1: Develop a 30 min survey presentation on an advanced topic of your choice in real-time and embedded computing.
 - Topic name due 10/17.
 - Slides due 11/17.
 - Presentation the week of 11/29

- Example topics:
 - Self-driving cars: the state of the art and future challenges
 - Real-time operating systems
 - Multicore scheduling – main challenges and results
 - Space applications
 - Scheduling Map/Reduce workflows (with emphasis on time support)
 - Participatory and social sensing (crowd-sensing)
 - Software model checking (proving software correctness)
 - Energy/smart grid
The 4th Credit Project (Suggested: 1-2 persons per project)

- Option 2: Implement a real-time or embedded systems service
 - Service name due 10/17.
 - Slides due 11/17.
 - Presentation + Demo the week of 11/29

- Example services:
 - A real-time scheduler for Roomba
 - Security and diagnostics
 - Real-time Hadoop
 - Social sensing services
 - Your idea here…
Scheduling Taxonomy

Periodic Task Scheduling

- Rate Monotonic
- EDF

With Deadline < Period
Consider a set of periodic tasks where each task, i, has a computation time, C_i, a period, P_i, and a relative deadline $D_i < P_i$.
Deadline Monotonic Scheduling

- Consider a set of periodic tasks where each task, i, has a computation time, C_i, a period, P_i, and a relative deadline $D_i < P_i$.

- What is the schedulability condition?
Deadline Monotonic Scheduling

- Consider a set of periodic tasks where each task, \(i \), has a computation time, \(C_i \), a period, \(P_i \), and a relative deadline \(D_i < P_i \).

- Schedulability can’t be worse than if \(P_i \) was reduced to \(D_i \). Thus:

\[
\sum_i \frac{C_i}{D_i} \leq n\left(2^{1/n} - 1\right)
\]
Deadline Monotonic Scheduling

- Consider a set of periodic tasks where each task, \(i \), has a computation time, \(C_i \), a period, \(P_i \), and a relative deadline \(D_i < P_i \).

- Schedulability can’t be worse than if \(P_i \) was reduced to \(D_i \). Thus:

\[
\sum_i \frac{C_i}{D_i} \leq n \left(2^{1/n} - 1\right)
\]
A Better Condition

- Worst case interference from a higher priority task, j?

![Diagram showing task durations and interference]

- D_i
- C_j
- P_j
- P_i
A Better Condition

- Worst case interference from a higher priority task, j?

\[
\begin{align*}
C_j & \quad P_j \\
D_i & \quad P_i
\end{align*}
\]

\[
\begin{bmatrix}
\frac{D_i}{P_j} \\
C_j
\end{bmatrix}
\]
A Better Condition

- Worst case interference from a higher priority task, j?

- Schedulability condition: $C_i + \sum_j \left\lfloor \frac{D_i}{P_j} \right\rfloor C_j \leq D_i$
A Better Condition

- Worst case interference from a higher priority task, \(j \) ?

- Schedulability condition:
 \[
 C_i + \sum_j \left\lfloor \frac{D_i}{P_j} \right\rfloor C_j \leq D_i
 \]
A Better Condition

- Worst case interference from a higher priority task, j?

- Schedulability condition:

$$C_i + \sum_j \left(\frac{D_i}{P_j} \right) C_j \leq D_i$$

Problem?

Worst case interference, I, from higher priority tasks

My exec. time

My deadline
An Exact Condition

Note: Interference exists only during the response time R_i not the entire D_i

$$I = \sum_i \left[\frac{R_i}{D_i} \right] C_j$$

Worst case interference, I, From higher priority tasks
An Exact Condition

Note: Interference exists only during the response time R_i not the entire D_i

\[
I = \sum_j \left[\frac{R_i}{D_j} \right] C_j
\]

where

\[
R_i = I + C_i
\]
An Exact Condition

Note: Interference exists only during the response time R_i not the entire D_i

\[
I = \sum_j \left[\frac{R_i}{D_j} \right] C_j
\]

where

\[
R_i = I + C_i
\]

Solve iteratively for the smallest R_i that satisfies both equations
Consider a system of two tasks:

Task 1: \(P_1 = 1.7, \ D_1 = 0.5, \ C_1 = 0.5 \)
Task 2: \(P_2 = 8, \ D_2 = 3.2, \ C_2 = 2 \)
Consider a system of two tasks:

Task 1: $P_1=1.7$, $D_1=0.5$, $C_1=0.5$
Task 2: $P_2=8$, $D_2=3.2$, $C_2=2$

$I^{(0)} = C_1 = 0.5$
$R_2^{(0)} = I^{(0)} + C_2 = 2.5$
Consider a system of two tasks:

Task 1: $P_1 = 1.7$, $D_1 = 0.5$, $C_1 = 0.5$
Task 2: $P_2 = 8$, $D_2 = 3.2$, $C_2 = 2$

\[
I = \sum_j \left[\frac{R_i}{P_j} \right] C_j
\]

\[
R_i = I + C_i
\]

\[
I^{(0)} = C_1 = 0.5
\]

\[
R_2^{(0)} = I^{(0)} + C_2 = 2.5
\]

\[
I^{(1)} = \left[\frac{R_2^{(0)}}{P_1} \right] C_1 = \left[\frac{2.5}{1.7} \right] 0.5 = 1
\]

\[
R_2^{(1)} = I^{(1)} + C_2 = 3
\]
Consider a system of two tasks:

Task 1: $P_1 = 1.7$, $D_1 = 0.5$, $C_1 = 0.5$
Task 2: $P_2 = 8$, $D_2 = 3.2$, $C_2 = 2$

$I = \sum_j \left[\frac{R_i}{P_j} \right] C_j$

$R_i = I + C_i$

$I^{(0)} = C_1 = 0.5$

$R_2^{(0)} = I^{(0)} + C_2 = 2.5$

$I^{(1)} = \left[\frac{R_2^{(0)}}{P_1} \right] C_1 = \left[\frac{2.5}{1.7} \right] 0.5 = 1$

$R_2^{(1)} = I^{(1)} + C_2 = 3$

$I^{(2)} = \left[\frac{R_2^{(1)}}{P_1} \right] C_1 = \left[\frac{3}{1.7} \right] 0.5 = 1$

$R_2^{(2)} = I^{(2)} + C_2 = 3$
Consider a system of two tasks:

Task 1: \(P_1=1.7, \ D_1=0.5, \ C_1=0.5 \)
Task 2: \(P_2=8, \ D_2=3.2, \ C_2=2 \)

\[
I = \sum_j \left[\frac{R_i}{P_j} \right] C_j
\]

\[
R_i = I + C_i
\]

\[
I^{(0)} = C_1 = 0.5
\]

\[
R_2^{(0)} = I^{(0)} + C_2 = 2.5
\]

\[
I^{(1)} = \left[\frac{R_2^{(0)}}{P_1} \right] C_1 = \left[\frac{2.5}{1.7} \right] 0.5 = 1
\]

\[
R_2^{(1)} = I^{(1)} + C_2 = 3
\]

\[
I^{(2)} = \left[\frac{R_2^{(1)}}{P_1} \right] C_1 = \left[\frac{3}{1.7} \right] 0.5 = 1
\]

\[
R_2^{(2)} = I^{(2)} + C_2 = 3
\]

\[3 < 3.2 \rightarrow \text{Ok!}\]
Mixed Periodic and Aperiodic Task Systems

- Question: how to execute aperiodic tasks without violating schedulability guarantees given to periodic tasks?
Mixed Periodic and Aperiodic Task Systems

- Question: how to execute aperiodic tasks without violating schedulability guarantees given to periodic tasks?
- One Answer: Execute aperiodic tasks at lowest priority
 - Problem: Poor performance for aperiodic tasks
Mixed Periodic and Aperiodic Task Systems

- Idea: aperiodic tasks can be served by periodically invoked servers
- The server can be accounted for in periodic task schedulability analysis
- The server has a period P_s and a budget B_s
- Server can serve aperiodic tasks until budget expires
- Servers have different flavors depending on the details of when they are invoked, what priority they have, and how budgets are replenished
Mixed Periodic and Aperiodic Task Systems

- Idea: aperiodic tasks can be served by periodically invoked servers.
- The server can be accounted for in periodic task schedulability analysis.
- The server has a period P_s and a budget B_s.
- Server can serve aperiodic tasks until budget expires.
- Servers have different flavors depending on the details of when they are invoked, what priority they have, and how budgets are replenished.
Mixed Periodic and Aperiodic Task Systems

- Idea: aperiodic tasks can be served by periodically invoked servers
- The server can be accounted for in periodic task schedulability analysis
- The server has a period P_s and a budget B_s
- Server can serve aperiodic tasks until budget expires
- Servers have different flavors depending on the details of when they are invoked, what priority they have, and how budgets are replenished
Polling Server

- Runs as a periodic task (priority set according to RM)
- Aperiodic arrivals are queued until the server task is invoked
- When the server is invoked it serves the queue until it is empty or until the budget expires then suspends itself
 - If the queue is empty when the server is invoked it suspends itself immediately.
- Server is treated as a regular periodic task in schedulability analysis
Example of a Polling Server

- Polling server:
 - Period $P_s = 5$
 - Budget $B_s = 2$

- Periodic task
 - $P = 4$
 - $C = 1.5$

- All aperiodic arrivals have $C=1$
Example of a Polling Server

- Polling server:
 - Period $P_s = 5$
 - Budget $B_s = 2$

- Periodic task
 - $P = 4$
 - $C = 1.5$

- All aperiodic arrivals have $C=1$
Example of a Polling Server

- Polling server:
 - Period $P_s = 5$
 - Budget $B_s = 2$

- Periodic task
 - $P = 4$
 - $C = 1.5$

- All aperiodic arrivals have $C=1$
Example of a Polling Server

- Polling server:
 - Period $P_s = 5$
 - Budget $B_s = 2$

- Periodic task
 - $P = 4$
 - $C = 1.5$

- All aperiodic arrivals have $C=1$

Why not execute immediately?
Deferrable Server

- Keeps the balance of the budget until the end of the period
- Example (continued)
Worst-Case Scenario

Exercise: Derive the utilization bound for a deferrable server plus one periodic task

\[U_p \leq \ln \left(\frac{U_s + 2}{2U_s + 1} \right) \]
Worst-Case Scenario

Exercise: Derive the utilization bound for a deferrable server plus one periodic task

\[U_p \leq \ln \left(\frac{U_s + 2}{2U_s + 1} \right) \]
Priority Exchange Server

- Like the deferrable server, it keeps the budget until the end of server period
- Unlike the deferrable server the priority slips over time: When not used the priority is exchanged for that of the executing periodic task
Priority Exchange Server

Example

Aperiodic tasks

Priority Exchange Server

Periodic Tasks
Priority Exchange Server

Example

\[U_p \leq \ln\left(\frac{2}{U_s + 1}\right) \]
Sporadic Server

- Server is said to be *active* if it is in the *running* or *ready* queue, otherwise it is *idle*.
- When an aperiodic task comes and the budget is not zero, the server becomes active.
- Every time the server becomes *active*, say at t_A, it sets replenishment time one period into the future, $t_A + P_s$ (but does not decide on replenishment amount).
- When the server becomes idle, say at t_I, set replenishment amount to capacity consumed in $[t_A, t_I]$

\[U_p \leq \ln \left(\frac{2}{U_s + 1} \right) \]
Slack Stealing Server

- Compute a slack function $A(t_s, t_f)$ that says how much total slack is available.
- Admit aperiodic tasks while slack is not exceeded.