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Reminder
 We must form 4-person groups for robot-

based MPs (each group gets one robot)
 If you already formed a group, please send me 

and Rohan Tabish (the TA) the names of your 
group partners (email to: rtabish@illinois.edu,
with CC: zaher@Illinois.edu). Please use the 
subject: “CS424 GROUP” (in upper case).

 All people who do not have a group by the end 
of next week will be assigned a group by us.
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Recap
 Reliability for a giving mission duration t, 

R(t), is the probability of the system working 
as specified (i.e., probability of no failures) 
for a duration that is at least as long as t.

 The most commonly used reliability function 
is the exponential reliability function:

where  is the failure rate.

tetR )(
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Triple Modular Redundancy
 Which case is TMR?

TMR has a lower reliability in the long 
term. How come?
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Implications of the Postulates
R(Effort, Complexity, t) = e-kC t/E 

 Note: splitting the effort greatly reduces 
reliability.



Analytic Redundancy and 
Complexity Reduction

 Partial redundancy via simple backup that 
meets only safety-critical requirements
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Example: A Sorting Exercise
 Sorting:

 Bubble sort: easy to write but slower, O(n2)
 Quick sort: faster, O(n log(n)), but more complicated to 

write 
 Joe remembers how to do bubble sort, but is not 

perfectly sure of quick sort (has a 50% chance of 
getting it right). 

 Joe is asked to write a sorting routine:
 Correct and fast: A
 Correct but slow: B
 Incorrect: F

Critical requirement: 
Must pass! 7



Solution
 Simplicity to “control” complexity
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Solution

 Key property
 Use complex but efficient solution in the 

common case
 If the complex solution fails, catch the failure 

and switch to the simple (less efficient) but safe 
option 
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Simplex Architectural Pattern

Simple high 
assurance
control subsystem

Complex high 
performance
control subsystem

Data Flow Block Diagram

Plant

Switch 
Logic

A simple verifiable core; diversity in the form of 2 
alternatives;  feedback control of the software execution.

Better performance, but less reliable



Example
 Component with mean time to failure = 10 

years. Compare the reliability of:
a) Using this component alone
b) TMR using three versions of this component
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Example
 Component with mean time to failure = 10 

years. Compare the reliability of:
a) Using this component alone
b) TMR using three versions of this component
After 1 year
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Example
 Component with mean time to failure = 10 

years. Compare the reliability of:
a) Using this component alone 
b) TMR using three versions of this component
After 1 year
Answer:

a) r(t) = e- t = e – (1/10).1 = 0.9048
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Example
 Component with mean time to failure = 10 

years. Compare the reliability of:
a) Using this component alone 
b) TMR using three versions of this component
After 1 year
Answer:

a) r(t) = e- t = e – (1/10).1 = 0.9048
b) r(t)3 + 3r(t)2 (1 – r(t)) = 0.9745
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Example
 Component with mean time to failure = 10 

years. Compare the reliability of:
a) Using this component alone 
b) TMR using three versions of this component
After 15 years
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Example
 Component with mean time to failure = 10 

years. Compare the reliability of:
a) Using this component alone 
b) TMR using three versions of this component
After 15 years
Answer:

a) r(t) = e- t = e – (1/10).15 = 0.2231
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Example
 Component with mean time to failure = 10 

years. Compare the reliability of:
a) Using this component alone 
b) TMR using three versions of this component
After 15 years
Answer:

a) r(t) = e- t = e – (1/10).15 = 0.2231
b) r(t)3 + 3r(t)2 (1 – r(t)) = 0.1271 

17



Example
 Component with mean time to failure = 10 years. 

Compare the reliability of:
a) Using this component alone 
b) TMR using three versions of this component
c) Using this component with a reduced complexity 

backup (C = 0.1)
After 15 years
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Example
 Component with mean time to failure = 10 years. 

Compare the reliability of:
a) Using this component alone 
b) TMR using three versions of this component
c) Using this component with a reduced complexity 

backup (C = 0.1)
After 15 years
Answer:
c) r1(t) = e- t = 0.2231, rb(t) = e – 0.1 t = 0.8607 
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Example
 Component with mean time to failure = 10 years. 

Compare the reliability of:
a) Using this component alone 
b) TMR using three versions of this component
c) Using this component with a reduced complexity 

backup (C = 0.1)
After 15 years
Answer:
c) r1(t) = e- t = 0.2231, rb(t) = e – 0.1 t = 0.8607 
1 – (1 – r1 (t))(1 – rb(t)) = 0.8918 20



Example
 Component with mean time to failure = 10 years 

(at unit complexity and unit budget). Compare 
the reliability of:
a) Using this component alone 
b) TMR using three versions of this component assuming 

same total budget
After 1 year
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Example
 Component with mean time to failure = 10 years (at unit 

complexity and unit budget). Compare the reliability of:
a) Using this component alone 
b) TMR using three versions of this component assuming same total 

budget
After 1 year
Answer:
a) r(t) = e- t = e – (1/10).1 = 0.9048
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Example
 Component with mean time to failure = 10 years (at unit 

complexity and unit budget). Compare the reliability of:
a) Using this component alone 
b) TMR using three versions of this component assuming same total 

budget
After 1 year
Answer:
a) r(t) = e- t = e – (1/10).1 = 0.9048
b) r2(t) = e-3  t = 0.7408

r2(t)3 + 3r2(t)2 (1 – r2(t)) = 0.8333 
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Lessons Learned?
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Lessons Learned
 More components/redundancy is not 

always better
 When budget is finite, more components 

means “spreading thinner”  lower 
reliability

 Having a simple (i.e., low complexity) back-
up significantly improves reliability!
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Well Formed Dependencies
 Informal intuition: A reliable component 

should not depend on a less reliable 
component (it defeats the purpose). 
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Well Formed Dependencies
 Informal intuition: A reliable component 

should not depend on a less reliable 
component (it defeats the purpose).

 Design guideline: Use but do not depend 
on less reliable components 
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Well Formed Dependencies
 Component A is said to depend on B, if the 

correctness of A’s service depends on B’s 
correctness.

 Component A is said to use the service of B, but 
not depend on it for its critical service S, if S can 
function correctly in spite of all B’s faults.

 A system’s dependency relations are said to be 
well-formed if and only if critical components may 
use but do not depend on the less critical 
components
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Design Philosophy
 Build the system out of a reliable core and less 

reliable components
 Ensure that the reliable core is minimal (must be 

simple to reduce complexity – see lessons learned 
from reliability examples )

 The reliable core can use but do not depend on 
other components (i.e., failures elsewhere should 
not affect reliable core)

 The reliable core should ensure safety or recover 
from failures of other components 29



Sorting Revisited
 How does the reliable component depend on 

the less reliable component? How to fix it?
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Sorting Revisited
 How does the reliable component depend on 

the less reliable component? How to fix it?
Reliable 
component

Less Reliable 
component 31



Sorting Revisited 
Ensuring Well-formed Dependencies

 Resource sharing faults
 Memory accessing fault: address space isolation
 Hogging the CPU: CPU cycle limit
 Timing fault: time out.

 Semantic fault
 Wrong order: Bubble sort
 Corrupt the input data item list: Export only a

permutation function on a protected input list
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Safe State
 In cyber-physical systems it important to keep the 

system from harm. The reliable core must ensure 
that the system remains in a safe state (keep the 
kid away from the freeway!!) even when other 
components fail

 Example:
 If your tire blows up, safely park the car on the 

shoulder of the road (safe state)
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Discussion: Patient Controlled 
Analgesia

 When pain is severe in a post-surgery 
patient, the patient can push a button to 
get more pain medication (morphine: drug 
overdose will cause death). This is an 
example of a lethal device in the hands of 
an error-prone operator (the patient). How 
can we ensure safety of software controlled 
PCA?
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Patient Controlled Analgesia
 Component list: 

 Infusion pump (with embedded micro-controller)
 Oxymeter (clipped on finger to measure blood oxygen level) 
 ECG Reader (taped to patient’s chest)
 Network that connects them
 Inexperienced user

 Design questions:
 Q1: What is the safety core? What’s a safe state?
 Q2: What components we can use but not depend on?
 Q3: What is the fault model for each component? 
 Q4: How can the safety core withstand those faults? 35



Discussion: Avionics
 In avionics, the autopilot must be level-A 

certified.
 The autopilot receives trajectory input 

from a flight guidance system that is 
only level-C certified. 

 Can the overall system be level-A 
certified? (Note: Assume that manual 
flight control is a safe state)  
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Avionics
 Component list: 

 Autopilot
 Flight guidance system
 Network that connects them
 Skilled pilot

 Design questions:
 Q1: What is the safety core? What’s a safe state?
 Q2: What components we can use but not depend on?
 Q3: What is the fault model for each component? 
 Q4: How can the safety core withstand those faults?
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Discussion: Ventilator/X-Ray 
Interaction

Case study:
 “A 32-year-old woman was having a laparoscopic cholecystectomy 

performed under general anesthesia. During that procedure and at the 
surgeon's request, a plain film x-ray was shot during a cholangiogram.

 The anesthesiologist stopped the ventilator for the x-ray. The x-ray 
technician was unable to remove the film because of its position beneath 
the table. The anesthesiologist attempted to help the technician, but found 
it difficult because the gears on the table had jammed.

 Finally, the x-ray was removed, and the surgical procedure recommenced.
 At some point, the anesthesiologist glanced at the EKG and noticed severe 

bradycardia. He realized he had never restarted the ventilator. This patient 
ultimately died”

APSF Newsletter, Winter 2005
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Ventilator/X-Ray Interaction
 Architecture #1: Master controller on a Linux server orchestrates ventilator 

and X-ray machine actions over a network. Controllers tells machines to stop 
and re-start, and ensures that ventilator is not off too long. Comments?
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Ventilator/X-Ray Interaction
 Architecture #1: Master controller on a Linux server orchestrates ventilator 

and X-ray machine actions over a network. Controllers tells machines to stop 
and re-start, and ensures that ventilator is not off too long. Comments?
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Ventilator/X-Ray Interaction
 Architecture #2: Master controller on a Linux server tells ventilator when to 

pause. Ventilator has a hardware timer and restarts automatically once 
timer expires. 
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Ventilator/X-Ray Interaction
 Architecture #2: Master controller on a Linux server tells ventilator when to 

pause. Ventilator has a hardware timer and restarts automatically once 
timer expires. 
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Discussion: Asimov Laws of 
Robotics 
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Discussion: Asimov Laws of 
Robotics 

 A robot may not injure a human being
 A robot must obey the orders given to it by 

human beings, except where such orders 
would conflict with the First Law.

 A robot must protect its own existence as 
long as such protection does not conflict 
with the First or Second Law.
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