
Well-formed Dependency and
Open-loop Safety

Based on Slides by Professor Lui
Sha

1

Reminder
 We must form 4-person groups for robot-

based MPs (each group gets one robot)
 If you already formed a group, please send me

and Rohan Tabish (the TA) the names of your
group partners (email to: rtabish@illinois.edu,
with CC: zaher@Illinois.edu). Please use the
subject: “CS424 GROUP” (in upper case).

 All people who do not have a group by the end
of next week will be assigned a group by us.

2

Recap
 Reliability for a giving mission duration t,

R(t), is the probability of the system working
as specified (i.e., probability of no failures)
for a duration that is at least as long as t.

 The most commonly used reliability function
is the exponential reliability function:

where  is the failure rate.

tetR )(

3

Triple Modular Redundancy
 Which case is TMR?

TMR has a lower reliability in the long
term. How come?

4

5

Implications of the Postulates
R(Effort, Complexity, t) = e-kC t/E

 Note: splitting the effort greatly reduces
reliability.

Analytic Redundancy and
Complexity Reduction

 Partial redundancy via simple backup that
meets only safety-critical requirements

6

Example: A Sorting Exercise
 Sorting:

 Bubble sort: easy to write but slower, O(n2)
 Quick sort: faster, O(n log(n)), but more complicated to

write
 Joe remembers how to do bubble sort, but is not

perfectly sure of quick sort (has a 50% chance of
getting it right).

 Joe is asked to write a sorting routine:
 Correct and fast: A
 Correct but slow: B
 Incorrect: F

Critical requirement:
Must pass! 7

Solution
 Simplicity to “control” complexity

8

Solution

 Key property
 Use complex but efficient solution in the

common case
 If the complex solution fails, catch the failure

and switch to the simple (less efficient) but safe
option

9

10

Simplex Architectural Pattern

Simple high
assurance
control subsystem

Complex high
performance
control subsystem

Data Flow Block Diagram

Plant

Switch
Logic

A simple verifiable core; diversity in the form of 2
alternatives; feedback control of the software execution.

Better performance, but less reliable

Example
 Component with mean time to failure = 10

years. Compare the reliability of:
a) Using this component alone
b) TMR using three versions of this component

11

Example
 Component with mean time to failure = 10

years. Compare the reliability of:
a) Using this component alone
b) TMR using three versions of this component
After 1 year

12

Example
 Component with mean time to failure = 10

years. Compare the reliability of:
a) Using this component alone
b) TMR using three versions of this component
After 1 year
Answer:

a) r(t) = e- t = e – (1/10).1 = 0.9048

13

Example
 Component with mean time to failure = 10

years. Compare the reliability of:
a) Using this component alone
b) TMR using three versions of this component
After 1 year
Answer:

a) r(t) = e- t = e – (1/10).1 = 0.9048
b) r(t)3 + 3r(t)2 (1 – r(t)) = 0.9745

14

Example
 Component with mean time to failure = 10

years. Compare the reliability of:
a) Using this component alone
b) TMR using three versions of this component
After 15 years

15

Example
 Component with mean time to failure = 10

years. Compare the reliability of:
a) Using this component alone
b) TMR using three versions of this component
After 15 years
Answer:

a) r(t) = e- t = e – (1/10).15 = 0.2231

16

Example
 Component with mean time to failure = 10

years. Compare the reliability of:
a) Using this component alone
b) TMR using three versions of this component
After 15 years
Answer:

a) r(t) = e- t = e – (1/10).15 = 0.2231
b) r(t)3 + 3r(t)2 (1 – r(t)) = 0.1271

17

Example
 Component with mean time to failure = 10 years.

Compare the reliability of:
a) Using this component alone
b) TMR using three versions of this component
c) Using this component with a reduced complexity

backup (C = 0.1)
After 15 years

18

Example
 Component with mean time to failure = 10 years.

Compare the reliability of:
a) Using this component alone
b) TMR using three versions of this component
c) Using this component with a reduced complexity

backup (C = 0.1)
After 15 years
Answer:
c) r1(t) = e- t = 0.2231, rb(t) = e – 0.1 t = 0.8607

19

Example
 Component with mean time to failure = 10 years.

Compare the reliability of:
a) Using this component alone
b) TMR using three versions of this component
c) Using this component with a reduced complexity

backup (C = 0.1)
After 15 years
Answer:
c) r1(t) = e- t = 0.2231, rb(t) = e – 0.1 t = 0.8607
1 – (1 – r1 (t))(1 – rb(t)) = 0.8918 20

Example
 Component with mean time to failure = 10 years

(at unit complexity and unit budget). Compare
the reliability of:
a) Using this component alone
b) TMR using three versions of this component assuming

same total budget
After 1 year

21

Example
 Component with mean time to failure = 10 years (at unit

complexity and unit budget). Compare the reliability of:
a) Using this component alone
b) TMR using three versions of this component assuming same total

budget
After 1 year
Answer:
a) r(t) = e- t = e – (1/10).1 = 0.9048

22

Example
 Component with mean time to failure = 10 years (at unit

complexity and unit budget). Compare the reliability of:
a) Using this component alone
b) TMR using three versions of this component assuming same total

budget
After 1 year
Answer:
a) r(t) = e- t = e – (1/10).1 = 0.9048
b) r2(t) = e-3  t = 0.7408

r2(t)3 + 3r2(t)2 (1 – r2(t)) = 0.8333

23

Lessons Learned?

24

Lessons Learned
 More components/redundancy is not

always better
 When budget is finite, more components

means “spreading thinner”  lower
reliability

 Having a simple (i.e., low complexity) back-
up significantly improves reliability!

25

Well Formed Dependencies
 Informal intuition: A reliable component

should not depend on a less reliable
component (it defeats the purpose).

26

Well Formed Dependencies
 Informal intuition: A reliable component

should not depend on a less reliable
component (it defeats the purpose).

 Design guideline: Use but do not depend
on less reliable components

27

Well Formed Dependencies
 Component A is said to depend on B, if the

correctness of A’s service depends on B’s
correctness.

 Component A is said to use the service of B, but
not depend on it for its critical service S, if S can
function correctly in spite of all B’s faults.

 A system’s dependency relations are said to be
well-formed if and only if critical components may
use but do not depend on the less critical
components

28

Design Philosophy
 Build the system out of a reliable core and less

reliable components
 Ensure that the reliable core is minimal (must be

simple to reduce complexity – see lessons learned
from reliability examples)

 The reliable core can use but do not depend on
other components (i.e., failures elsewhere should
not affect reliable core)

 The reliable core should ensure safety or recover
from failures of other components 29

Sorting Revisited
 How does the reliable component depend on

the less reliable component? How to fix it?

30

Sorting Revisited
 How does the reliable component depend on

the less reliable component? How to fix it?
Reliable
component

Less Reliable
component 31

Sorting Revisited
Ensuring Well-formed Dependencies

 Resource sharing faults
 Memory accessing fault: address space isolation
 Hogging the CPU: CPU cycle limit
 Timing fault: time out.

 Semantic fault
 Wrong order: Bubble sort
 Corrupt the input data item list: Export only a

permutation function on a protected input list
32

Safe State
 In cyber-physical systems it important to keep the

system from harm. The reliable core must ensure
that the system remains in a safe state (keep the
kid away from the freeway!!) even when other
components fail

 Example:
 If your tire blows up, safely park the car on the

shoulder of the road (safe state)

33

Discussion: Patient Controlled
Analgesia

 When pain is severe in a post-surgery
patient, the patient can push a button to
get more pain medication (morphine: drug
overdose will cause death). This is an
example of a lethal device in the hands of
an error-prone operator (the patient). How
can we ensure safety of software controlled
PCA?

34

Patient Controlled Analgesia
 Component list:

 Infusion pump (with embedded micro-controller)
 Oxymeter (clipped on finger to measure blood oxygen level)
 ECG Reader (taped to patient’s chest)
 Network that connects them
 Inexperienced user

 Design questions:
 Q1: What is the safety core? What’s a safe state?
 Q2: What components we can use but not depend on?
 Q3: What is the fault model for each component?
 Q4: How can the safety core withstand those faults? 35

Discussion: Avionics
 In avionics, the autopilot must be level-A

certified.
 The autopilot receives trajectory input

from a flight guidance system that is
only level-C certified.

 Can the overall system be level-A
certified? (Note: Assume that manual
flight control is a safe state)

36

Avionics
 Component list:

 Autopilot
 Flight guidance system
 Network that connects them
 Skilled pilot

 Design questions:
 Q1: What is the safety core? What’s a safe state?
 Q2: What components we can use but not depend on?
 Q3: What is the fault model for each component?
 Q4: How can the safety core withstand those faults?

37

Discussion: Ventilator/X-Ray
Interaction

Case study:
 “A 32-year-old woman was having a laparoscopic cholecystectomy

performed under general anesthesia. During that procedure and at the
surgeon's request, a plain film x-ray was shot during a cholangiogram.

 The anesthesiologist stopped the ventilator for the x-ray. The x-ray
technician was unable to remove the film because of its position beneath
the table. The anesthesiologist attempted to help the technician, but found
it difficult because the gears on the table had jammed.

 Finally, the x-ray was removed, and the surgical procedure recommenced.
 At some point, the anesthesiologist glanced at the EKG and noticed severe

bradycardia. He realized he had never restarted the ventilator. This patient
ultimately died”

APSF Newsletter, Winter 2005
38

Ventilator/X-Ray Interaction
 Architecture #1: Master controller on a Linux server orchestrates ventilator

and X-ray machine actions over a network. Controllers tells machines to stop
and re-start, and ensures that ventilator is not off too long. Comments?

39

Ventilator/X-Ray Interaction
 Architecture #1: Master controller on a Linux server orchestrates ventilator

and X-ray machine actions over a network. Controllers tells machines to stop
and re-start, and ensures that ventilator is not off too long. Comments?

40

Ventilator/X-Ray Interaction
 Architecture #2: Master controller on a Linux server tells ventilator when to

pause. Ventilator has a hardware timer and restarts automatically once
timer expires.

41

Ventilator/X-Ray Interaction
 Architecture #2: Master controller on a Linux server tells ventilator when to

pause. Ventilator has a hardware timer and restarts automatically once
timer expires.

42

Discussion: Asimov Laws of
Robotics

43

Discussion: Asimov Laws of
Robotics

 A robot may not injure a human being
 A robot must obey the orders given to it by

human beings, except where such orders
would conflict with the First Law.

 A robot must protect its own existence as
long as such protection does not conflict
with the First or Second Law.

44

