
Aperiodic, Multicore, and
Distributed Scheduling

Tarek Abdelzaher

The 4th Credit Project
(Suggested: 1-2 persons per project)

 Option 1: Develop a 30 min survey presentation on an advanced topic of your
choice in real-time and embedded computing.
 Topic name due 10/17.
 Slides due 11/17.
 Presentation the week of 12/2

 Example topics:
 Self-driving cars: the state of the art and future challenges
 Real-time AI
 Multicore scheduling – main challenges and results
 Embedded system security
 Scheduling Map/Reduce workflows (with emphasis on time support)
 Participatory and social sensing (crowd-sensing)
 Software model checking (proving software correctness)
 IoT market

 Option 2: Implement a real-time or embedded systems service
 Service name due 10/17.
 Slides due 11/17.
 Presentation + Demo the week of 12/2

 Example services:
 A real-time scheduler for “Intelligence as a Service”
 Security and diagnostics
 Disaster response services
 Social sensing services
 Your idea here…

The 4th Credit Project
(Suggested: 1-2 persons per project)

Mixed Periodic and Aperiodic
Task Systems

 Question: how to execute aperiodic tasks
without violating schedulability guarantees
given to periodic tasks?

Mixed Periodic and Aperiodic
Task Systems

 Question: how to execute aperiodic tasks
without violating schedulability guarantees
given to periodic tasks?

 One Answer: Execute aperiodic tasks at lowest
priority
 Problem: Poor performance for aperiodic tasks

Mixed Periodic and Aperiodic
Task Systems

 Idea: aperiodic tasks can be served by periodically invoked
servers

 The server can be accounted for in periodic task schedulability
analysis

 The server has a period Ps and a budget Bs
 Server can serve aperiodic tasks until budget expires
 Servers have different flavors depending on the details of when

they are invoked, what priority they have, and how budgets are
replenished

Server

Period, Ps

Budget, Bs

Mixed Periodic and Aperiodic
Task Systems

 Idea: aperiodic tasks can be served by periodically invoked
servers

 The server can be accounted for in periodic task schedulability
analysis

 The server has a period Ps and a budget Bs
 Server can serve aperiodic tasks until budget expires
 Servers have different flavors depending on the details of when

they are invoked, what priority they have, and how budgets are
replenished

Server

Aperiodic Tasks

Mixed Periodic and Aperiodic
Task Systems

 Idea: aperiodic tasks can be served by periodically invoked
servers

 The server can be accounted for in periodic task schedulability
analysis

 The server has a period Ps and a budget Bs
 Server can serve aperiodic tasks until budget expires
 Servers have different flavors depending on the details of when

they are invoked, what priority they have, and how budgets are
replenished

Aperiodic Tasks

Server

Polling Server
 Runs as a periodic task (priority set according to RM)
 Aperiodic arrivals are queued until the server task is

invoked
 When the server is invoked it serves the queue until it

is empty or until the budget expires then suspends
itself
 If the queue is empty when the server is invoked it suspends

itself immediately.
 Server is treated as a regular periodic task in

schedulability analysis

Example of a Polling Server
 Polling server:

 Period Ps = 5
 Budget Bs = 2

 Periodic task
 P = 4
 C = 1.5

 All aperiodic arrivals have C=1

Aperiodic arrivals

Example of a Polling Server
 Polling server:

 Period Ps = 5
 Budget Bs = 2

 Periodic task
 P = 4
 C = 1.5

 All aperiodic arrivals have C=1

Aperiodic arrivals

Example of a Polling Server
 Polling server:

 Period Ps = 5
 Budget Bs = 2

 Periodic task
 P = 4
 C = 1.5

 All aperiodic arrivals have C=1

Aperiodic arrivals

Budget

Example of a Polling Server
 Polling server:

 Period Ps = 5
 Budget Bs = 2

 Periodic task
 P = 4
 C = 1.5

 All aperiodic arrivals have C=1

Aperiodic arrivals

Budget

Why not execute immediately?

1 2 3 4

Deferrable Server
 Keeps the balance of the budget until the end of

the period
 Example (continued)

Aperiodic arrivals

Budget Polling
Server

Deferrable
Server

Worst-Case Scenario

C1
P1

P2

Task 1

Task 2 C2

C1
P1

P2

Task 1

Task 2 C2

Deferred
Previous
Invocation













12
2ln

s

s
p U

UU

Exercise: Derive the utilization bound for a deferrable server plus one periodic task

Worst-Case Scenario

C1
P1

P2

Task 1

Task 2 C2

C1
P1

P2

Task 1

Task 2 C2

Deferred
Previous
Invocation













12
2ln

s

s
p U

UU

Exercise: Derive the utilization bound for a deferrable server plus one periodic task

0.186

0.652
0.69

1.0

1.0
Us

U

Priority Exchange Server
 Like the deferrable server, it keeps the budget

until the end of server period
 Unlike the deferrable server the priority slips

over time: When not used the priority is
exchanged for that of the executing periodic
task

Priority Exchange Server

Aperiodic tasks

Priority Exchange
Server

Periodic
Tasks

Example

Priority Exchange Server

Aperiodic tasks

Priority Exchange
Server

Periodic
Tasks

Example












1

2ln
s

p U
U

0.186

0.652
0.69

1.0

1.0
Us

U

Priority Exchange

Defer.

Sporadic Server
 Server is said to be active if it is in the running or ready

queue, otherwise it is idle.
 When an aperiodic task comes and the budget is not

zero, the server becomes active
 Every time the server becomes active, say at tA, it sets

replenishment time one period into the future, tA + Ps
(but does not decide on replenishment amount).

 When the server becomes idle, say at tI , set
replenishment amount to capacity consumed in [tA, tI]












1

2ln
s

p U
U

Slack Stealing Server
 Compute a slack function A(ts, tf) that says how

much total slack is available
 Admit aperiodic tasks while slack is not

exceeded

Multicore Scheduling
 Partitioned

 Each core has statically assigned tasks
 Better isolation
 Less effective load sharing (idle time on one core

cannot be utilized by another

 Global
 A single queue of tasks is dispatched to

whatever core is available
 Better load sharing
 Poor isolation

Multicore System Utilization
 Utilization, expressed below, for a system

of m cores can be 0 to m:

U = i Ci /Pi

Utilization Bound for
Partitioned EDF

 For a uniprocessor, a set of independent
periodic tasks (with periods equal to deadline)
is schedulable if U 1.

 What about a partitioned multiprocessor?

Utilization Bound for
Partitioned EDF

 For a uniprocessor, a set of independent
periodic tasks (with periods equal to deadline)
is schedulable if U 1.

 What about a partitioned multiprocessor?
Schedulable by partitioned EDF if

U (m+1)/2

(sufficient condition)

Utilization Bound for
Partitioned EDF

 There cannot be a better bound than:

U (m+1)/2

Why?

Utilization Bound for
Partitioned EDF

 There cannot be a better bound than:

U (m+1)/2

Why?
Consider m tasks of utilization (0.5 + very small
value) that arrive first, then one more task of
utilization = 0.5. Can the last task be scheduled?

Utilization Bound for
Partitioned EDF

 What if the largest-utilization task (also called
the heaviest task) has a utilization no more
than Umax?

Utilization Bound for
Partitioned EDF



Utilization Bound for
Partitioned EDF



Utilization Bound for
Partitioned EDF



Utilization Bound for Global
EDF
 Consider a case where m very small tasks

arrive (each of nearly zero utilization), then
a task arrives of utilization = 1. Can the last
task be scheduled?

Utilization Bound for Global
EDF
 Consider a case where m very small tasks

arrive (each of nearly zero utilization), then
a task arrives of utilization = 1. Can the last
task be scheduled?

 Task set is schedulable if U

Utilization Bound for Global
EDF

 What if maximum task utilization is Umax?

Utilization Bound for Global
EDF



Task Pipelines

Machine 1 Machine nMachine 2 …
Flow T1
Flow T2
FlowT3

Equivalent
Uniprocessor?

Machine 1

Machine 2

Machine 3

Three data pipelines

Pipeline (Data) Processing

 
stages tasks

Delay
J1 J2 J3

J1 J2 J3

J1 J2 J3

St
ag

es

Jobs

time

 Sub-additive delay composition due to
pipeline overlap

ji,stages allji,
stages all

Cmax 2 CmaxDelay

jobs
priority
higher

jobs
priority
higher

 

 Especially useful for systems with tight
deadlines

C1,1 C2,1 C3,1 C4,1

C1,2 C2,2 C3,2 C4,2

C1,3 C2,3 C3,3 C4,3

C1,4 C2,4 C3,4 C4,4

Main Results
 Consider task n that traverses stages j = 1, …, N

together with higher priority tasks i.
 Delay composition theorem:

 Let MaxNodej be the longest execution time of all tasks that
execute on node j.

 Let MaxTaski be the maximum execution time of task i across
all nodes visited by the task

 The delay of task n is given by:

Delay < i>n (2 MaxTaski) + j MaxNodej

Task Set Reduction
 Each higher priority task i is reduced to a uniprocessor

task with a computation time = 2 MaxTaski

 Task n (under consideration) is reduced to a unirpcessor

task with a computation time = j MaxNodej

 Uniprocessor bounds then apply.

