Aperiodic, Multicore, and Distributed Scheduling

Tarek Abdelzaher

The 4th Credit Project (Suggested: 1-2 persons per project)

- Option 1: Develop a 30 min survey presentation on an advanced topic of your choice in real-time and embedded computing.
 - Topic name due 10/17.
 - Slides due 11/17.
 - Presentation the week of 12/2
- Example topics:
 - Self-driving cars: the state of the art and future challenges
 - Real-time AI
 - Multicore scheduling main challenges and results
 - Embedded system security
 - Scheduling Map/Reduce workflows (with emphasis on time support)
 - Participatory and social sensing (crowd-sensing)
 - Software model checking (proving software correctness)
 - IoT market

The 4th Credit Project (Suggested: 1-2 persons per project)

- Option 2: Implement a real-time or embedded systems service
 - Service name due 10/17.
 - Slides due 11/17.
 - Presentation + Demo the week of 12/2
- Example services:
 - A real-time scheduler for "Intelligence as a Service"
 - Security and diagnostics
 - Disaster response services
 - Social sensing services
 - Your idea here...

Question: how to execute aperiodic tasks without violating schedulability guarantees given to periodic tasks?

- Question: how to execute aperiodic tasks without violating schedulability guarantees given to periodic tasks?
- One Answer: Execute aperiodic tasks at lowest priority
 - Problem: Poor performance for aperiodic tasks

- Idea: aperiodic tasks can be served by periodically invoked servers
- The server can be accounted for in periodic task schedulability analysis
- The server has a period P_s and a budget B_s
- Server can serve aperiodic tasks until budget expires
- Servers have different flavors depending on the details of when they are invoked, what priority they have, and how budgets are replenished

- Idea: aperiodic tasks can be served by periodically invoked servers
- The server can be accounted for in periodic task schedulability analysis
- The server has a period P_s and a budget B_s
- Server can serve aperiodic tasks until budget expires
- Servers have different flavors depending on the details of when they are invoked, what priority they have, and how budgets are replenished

- Idea: aperiodic tasks can be served by periodically invoked servers
- The server can be accounted for in periodic task schedulability analysis
- The server has a period P_s and a budget B_s
- Server can serve aperiodic tasks until budget expires
- Servers have different flavors depending on the details of when they are invoked, what priority they have, and how budgets are replenished

Polling Server

- Runs as a periodic task (priority set according to RM)
- Aperiodic arrivals are queued until the server task is invoked
- When the server is invoked it serves the queue until it is empty or until the budget expires then suspends itself
 - If the queue is empty when the server is invoked it suspends itself immediately.
- Server is treated as a regular periodic task in schedulability analysis

- Polling server:
 - Period $P_s = 5$
 - Budget $B_s = 2$
- Periodic task
 - *P* = 4
 - *C* = 1.5

• All aperiodic arrivals have C=1

- Polling server:
 - Period $P_s = 5$
 - Budget $B_s = 2$
- Periodic task
 - *P* = 4
 - *C* = 1.5

• All aperiodic arrivals have C=1

- Polling server:
 - Period $P_s = 5$
 - Budget $B_s = 2$
- Periodic task
 - *P* = 4
 - *C* = 1.5

• All aperiodic arrivals have C=1

- Polling server:
 - Period $P_s = 5$
 - Budget $B_s = 2$
- Periodic task
 - *P* = 4
 - *C* = 1.5
- All aperiodic arrivals have C=1

Why not execute immediately?

Deferrable Server

- Keeps the balance of the budget until the end of the period
- Example (continued)

Exercise: Derive the utilization bound for a deferrable server plus one periodic task

Exercise: Derive the utilization bound for a deferrable server plus one periodic task

Priority Exchange Server

- Like the deferrable server, it keeps the budget until the end of server period
- Unlike the deferrable server the priority slips over time: When not used the priority is exchanged for that of the executing periodic task

Priority Exchange Server

Example

Sporadic Server

- Server is said to be *active* if it is in the *running* or *ready* queue, otherwise it is *idle*.
- When an aperiodic task comes and the budget is not zero, the server becomes active
- Every time the server becomes *active*, say at t_A , it sets replenishment time one period into the future, $t_A + P_s$ (but does not decide on replenishment amount).
- When the server becomes idle, say at t_I , set replenishment amount to capacity consumed in $[t_A, t_I]$

$$U_p \le \ln\!\left(\frac{2}{U_s+1}\right)$$

Slack Stealing Server

- Compute a slack function $A(t_s, t_f)$ that says how much total slack is available
- Admit aperiodic tasks while slack is not exceeded

Multicore Scheduling

- Partitioned
 - Each core has statically assigned tasks
 - Better isolation
 - Less effective load sharing (idle time on one core cannot be utilized by another
- Global
 - A single queue of tasks is dispatched to whatever core is available
 - Better load sharing
 - Poor isolation

Multicore System Utilization

 Utilization, expressed below, for a system of *m* cores can be 0 to *m*:

$$U = \sum_{i} C_{i} / P_{i}$$

- For a uniprocessor, a set of independent periodic tasks (with periods equal to deadline) is schedulable if $U \leq 1$.
- What about a partitioned multiprocessor?

- For a uniprocessor, a set of independent periodic tasks (with periods equal to deadline) is schedulable if $U \leq 1$.
- What about a partitioned multiprocessor?
 Schedulable by partitioned EDF if

$$U \le (m+1)/2$$

(sufficient condition)

• There cannot be a better bound than:

 $U \leq (m+1)/2$

Why?

• There cannot be a better bound than:

 $U \leq (m+1)/2$

Why?

Consider *m* tasks of utilization (0.5 + very small value) that arrive first, then one more task of utilization = 0.5. Can the last task be scheduled?

• What if the largest-utilization task (also called the *heaviest* task) has a utilization no more than U_{max} ?

- What if the largest-utilization task (also called the *heaviest* task) has a utilization no more than U_{max} ?
 - Task set is schedulable if:

$$U \leq \frac{\beta m + 1}{\beta + 1},$$

where

$$\beta = \left| \frac{1}{U_{max}} \right|$$

$$U \leq \frac{\beta m + 1}{\beta + 1}$$
, where $\beta = \left\lfloor \frac{1}{U_{max}} \right\rfloor$

Why?

Intuition: Imagine all cores are full of tasks of maximum weight (hence, βU_{max} on each core) then a new task arrives that causes the utilization of a core to barely overflow.

$$U \leq \frac{\beta m + 1}{\beta + 1}$$
, where $\beta = \left\lfloor \frac{1}{U_{max}} \right\rfloor$

Why?

Intuition: Imagine all cores are full of tasks of maximum weight (hence, βU_{max} on each core) then a new task arrives that causes the utilization of a core to barely overflow.

 $T = 1 + (..., 1) \quad O \quad T = -1 + (..., 1) \quad O \quad 1 = \beta m + 1$

Consider a case where *m* very small tasks arrive (each of nearly zero utilization), then a task arrives of utilization = 1. Can the last task be scheduled?

- Consider a case where *m* very small tasks arrive (each of nearly zero utilization), then a task arrives of utilization = 1. Can the last task be scheduled?
- Task set is schedulable if $U \leq 1$

• What if maximum task utilization is U_{max} ?

• What if maximum task utilization is U_{max} ?

• Task set is schedulable if $U \le m - (m-1)U_{max}$

Pipeline (Data) Processing

Sub-additive delay composition due to pipeline overlap

$$Delay < \sum_{stages} \sum_{tasks}$$

 Especially useful for systems with tight deadlines

Main Results

- Consider task n that traverses stages j = 1, ..., N together with higher priority tasks i.
- Delay composition theorem:
 - Let MaxNode_j be the longest execution time of all tasks that execute on node j.
 - Let MaxTask_i be the maximum execution time of task i across all nodes visited by the task
- The delay of task n is given by:

 $Delay < \sum_{i>n} (2 MaxTask_i) + \sum_j MaxNode_j$

Task Set Reduction

- Each higher priority task i is reduced to a uniprocessor task with a computation time = 2 MaxTask_i
- Task n (under consideration) is reduced to a unirpcessor task with a computation time = \sum_{i} MaxNode_i
- Uniprocessor bounds then apply.