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The 4th Credit Project
(Suggested: 1-2 persons per project)

 Option 1: Develop a 30 min survey presentation on an advanced topic of your 
choice in real-time and embedded computing. 
 Topic name due 10/17.
 Slides due 11/17.
 Presentation the week of 12/2

 Example topics:
 Self-driving cars: the state of the art and future challenges   
 Real-time AI
 Multicore scheduling – main challenges and results
 Embedded system security 
 Scheduling Map/Reduce workflows (with emphasis on time support) 
 Participatory and social sensing (crowd-sensing)  
 Software model checking (proving software correctness) 
 IoT market 



 Option 2: Implement a real-time or embedded systems service 
 Service name due 10/17.
 Slides due 11/17.
 Presentation + Demo the week of 12/2

 Example services:
 A real-time scheduler for “Intelligence as a Service”  
 Security and diagnostics
 Disaster response services
 Social sensing services
 Your idea here…

The 4th Credit Project
(Suggested: 1-2 persons per project)



Mixed Periodic and Aperiodic 
Task Systems

 Question: how to execute aperiodic tasks 
without violating schedulability guarantees 
given to periodic tasks?



Mixed Periodic and Aperiodic 
Task Systems

 Question: how to execute aperiodic tasks 
without violating schedulability guarantees 
given to periodic tasks?

 One Answer: Execute aperiodic tasks at lowest 
priority
 Problem: Poor performance for aperiodic tasks



Mixed Periodic and Aperiodic 
Task Systems

 Idea: aperiodic tasks can be served by periodically invoked 
servers

 The server can be accounted for in periodic task schedulability 
analysis

 The server has a period Ps and a budget Bs
 Server can serve aperiodic tasks until budget expires
 Servers have different flavors depending on the details of when 

they are invoked, what priority they have, and how budgets are 
replenished
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Polling Server
 Runs as a periodic task (priority set according to RM)
 Aperiodic arrivals are queued until the server task is 

invoked
 When the server is invoked it serves the queue until it 

is empty or until the budget expires then suspends 
itself
 If the queue is empty when the server is invoked it suspends 

itself immediately.
 Server is treated as a regular periodic task in 

schedulability analysis



Example of a Polling Server
 Polling server:

 Period Ps = 5
 Budget Bs = 2

 Periodic task 
 P = 4
 C = 1.5

 All aperiodic arrivals have C=1

Aperiodic arrivals
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Example of a Polling Server
 Polling server:

 Period Ps = 5
 Budget Bs = 2

 Periodic task 
 P = 4
 C = 1.5

 All aperiodic arrivals have C=1

Aperiodic arrivals

Budget

Why not execute immediately?

1                                 2             3                         4



Deferrable Server 
 Keeps the balance of the budget until the end of 

the period
 Example (continued)

Aperiodic arrivals

Budget Polling
Server

Deferrable
Server



Worst-Case Scenario
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Exercise: Derive the utilization bound for a deferrable server plus one periodic task
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Priority Exchange Server
 Like the deferrable server, it keeps the budget 

until the end of server period
 Unlike the deferrable server the priority slips 

over time: When not used the priority is 
exchanged for that of the executing periodic 
task



Priority Exchange Server

Aperiodic tasks
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Priority Exchange Server

Aperiodic tasks
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Sporadic Server
 Server is said to be active if it is in the running or ready

queue, otherwise it is idle.
 When an aperiodic task comes and the budget is not 

zero, the server becomes active
 Every time the server becomes active, say at tA, it sets 

replenishment time one period into the future, tA + Ps
(but does not decide on replenishment amount).

 When the server becomes idle, say at tI , set 
replenishment amount to capacity consumed in [tA, tI] 
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Slack Stealing Server
 Compute a slack function A(ts, tf) that says how 

much total slack is available
 Admit aperiodic tasks while slack is not 

exceeded



Multicore Scheduling
 Partitioned

 Each core has statically assigned tasks
 Better isolation
 Less effective load sharing (idle time on one core 

cannot be utilized by another

 Global
 A single queue of tasks is dispatched to 

whatever core is available
 Better load sharing
 Poor isolation 



Multicore System Utilization
 Utilization, expressed below, for a system 

of m cores can be 0 to m: 

U = i Ci /Pi



Utilization Bound for 
Partitioned EDF

 For a uniprocessor, a set of independent 
periodic tasks (with periods equal to deadline) 
is schedulable if  U 1. 

 What about a partitioned multiprocessor?



Utilization Bound for 
Partitioned EDF

 For a uniprocessor, a set of independent 
periodic tasks (with periods equal to deadline) 
is schedulable if  U 1. 

 What about a partitioned multiprocessor?
Schedulable by partitioned EDF if

U (m+1)/2

(sufficient condition) 



Utilization Bound for 
Partitioned EDF

 There cannot be a better bound than:

U (m+1)/2

Why? 



Utilization Bound for 
Partitioned EDF

 There cannot be a better bound than:

U (m+1)/2

Why?
Consider m tasks of utilization (0.5 + very small 
value) that arrive first, then one more task of 
utilization = 0.5. Can the last task be scheduled? 



Utilization Bound for 
Partitioned EDF

 What if the largest-utilization task (also called 
the heaviest task) has a utilization no more 
than Umax?  
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Utilization Bound for Global 
EDF
 Consider a case where m very small tasks 

arrive (each of nearly zero utilization), then 
a task arrives of utilization = 1. Can the last 
task be scheduled?



Utilization Bound for Global 
EDF
 Consider a case where m very small tasks 

arrive (each of nearly zero utilization), then 
a task arrives of utilization = 1. Can the last 
task be scheduled?

 Task set is schedulable if   U 



Utilization Bound for Global 
EDF

 What if maximum task utilization is Umax?



Utilization Bound for Global 
EDF





Task Pipelines

Machine 1 Machine nMachine 2 …
Flow T1
Flow T2
FlowT3

Equivalent 
Uniprocessor?

Machine 1

Machine 2

Machine 3

Three data pipelines



Pipeline (Data) Processing
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 Especially useful for systems with tight 
deadlines

C1,1 C2,1 C3,1 C4,1

C1,2 C2,2 C3,2 C4,2

C1,3 C2,3 C3,3 C4,3

C1,4 C2,4 C3,4 C4,4



Main Results
 Consider task n that traverses stages j = 1, …, N 

together with higher priority tasks i.
 Delay composition theorem:

 Let MaxNodej be the longest execution time of all tasks that 
execute on node j.

 Let MaxTaski be the maximum execution time of task i across 
all nodes visited by the task

 The delay of task n is given by:

Delay < i>n (2 MaxTaski) + j MaxNodej



Task Set Reduction
 Each higher priority task i is reduced to a uniprocessor 

task with a computation time = 2 MaxTaski

 Task n (under consideration) is reduced to a unirpcessor 

task with a computation time = j MaxNodej

 Uniprocessor bounds then apply.


