By: Rohan Tabish

What have we learned so far ?

Recap - Asimov Laws for Robotics

1. A robot may not injure a human being or, through inaction, allow a human being to come to harm

Recap - Asimov Laws for Robotics

1. A robot may not injure a human being or, through inaction, allow a human being to come to harm

2. A robot must obey the orders given it by human beings except where such orders would conflict with the First Law

Recap - Asimov Laws for Robotics

1. A robot may not injure a human being or, through inaction, allow a human being to come to harm

2. A robot must obey the orders given it by human beings except where such orders would conflict with the First Law 3. A robot must protect its own existence as long as such protection does not conflict with the First or Second Laws

What kinds of robots we want?

What kinds of robots we want?

What kinds of robots we want?

Let us put together what we have learned so far into practice in our next machine problem.

Farmer planting tree

asc n

Farmer planting tree

Uncovers a maze

SEG R

Farmer planting tree

Uncovers a maze

A research team is assembled to send a robot

Farmer planting tree

Uncovers a maze

A research team is assembled to send a robot

The maze is labeled as **archeological** site. So there are **requirements** that robot must follow.

Requirements

- Requirement # 1: Look but do not touch
 - The robot should not run into or damage any object
- Requirement # 2: Protect yourself
 - The robot should avoid self-damage because their are cliffs and traps
- Requirement # 3: Run some analytics
 - Scientist want to download analytics tasks to the robot that show run while exploring the maze. The task runs analytics on the data captured by the robot.
- Requirement # 4: Finish as quickly as possible

• What are the hazards from environment?

• Mission-critical requirements

 \circ What needs to be done for this mission to be successful?

- Performance-critical requirements
 - What decides how well the mission is executed?

•

Safety-critical: basic survival/safety

• Mission-critical: the purpose of the mission

• Performance-critical: attributes describing how well the mission is performed

- Safety-critical: basic survival/safety
 - \circ Stop when hitting the wall, wheels dropping, cliff signal, overcurrent

• Mission-critical: the purpose of the mission

• Performance-critical: attributes describing how well the mission is performed

• Safety-critical: basic survival/safety

• Stop when hitting the wall, wheels dropping, cliff signal, overcurrent

• Mission-critical: the purpose of the mission

- Violating them causes the mission to fail, but the system will remain unharmed
- Track trajectory, take pictures, run external task

• Performance-critical: attributes describing how well the mission is performed

• Safety-critical: basic survival/safety

• Stop when hitting the wall, wheels dropping, cliff signal, overcurrent

• Mission-critical: the purpose of the mission

- Violating them causes the mission to fail, but the system will remain unharmed
- \circ $\;$ $\;$ Track trajectory, take pictures, run external task $\;$

- Performance-critical: attributes describing how well the mission is performed
 - Travel time, time to finish entire mission (including processing pictures), photo analysis

How many threads we need ?

- Wall sensor
- Cliff/wheel drop sensor
- Overcurrent sensor
- Motion control
- Sound/LED
- Tracking trajectory
- Taking photos
- Matching pictures

Map the Tasks to Criticality Levels We Defined

• Safety-critical: Basic Survival/Safety

- Highest Priority
- $\circ \quad \ \ {\rm Least\ Priority,\ fastest\ response}$
- Checking safety-related sensors, stop immediately if needed
- Mission-critical: the purpose of the mission
 - $\circ \quad \ \ {\rm Second \ Highest \ Priority}$
 - Motion Control, Tracking and Navigation etc
 - \circ Follow the wall, tracking trajectory

• Performance-critical: Quality of the mission

- Lowest Priority
- Computer Vision
- Taking pictures, run openCV

Map the Tasks to Criticality Levels We Learned

• Safety-critical: Basic Survival/Safety

We atleast need three threads.

Mission-critical: the purpose of the mission

- $\circ \quad {\rm Second \; Highest \; Priority} \\$
- \circ Motion Control, Tracking and Navigation etc
- \circ Follow the wall, tracking trajectory

• Performance-critical: Quality of the mission

- Lowest Priority
- Computer Vision
- Taking pictures, run openCV

Map the Tasks to Criticality Levels We Learned

Safety-critical: Basic Survival/Safety

We atleast need three threads.

Mission-critical: the purpose of the mission

- Second Highest Priority
- Motion Control, Tracking and Navigation etc
- Follow the wall, tracking trajectory

Can we have more threads? Sure.

Map the Tasks to Criticality Levels We Learned

Safety-critical: Basic Survival/Safety

We atleast need three threads.

Mission-critical: the purpose of the mission

- Second Highest Priority
- Motion Control, Tracking and Navigation etc
- \circ Follow the wall, tracking trajectory

Can we have more threads? Sure. Caution: Having too many threads can introduce overhead.

Alright, I can do this with three threads?

• Safety-critical: Basic Survival/Safety

- Highest Priority
- $\circ \quad \ \ Least \ Priority, fastest \ response$
- Checking safety-related sensors, stop immediately if needed
- Mission-critical: the purpose of the mission
 - $\circ \quad \ \ {\rm Second \ Highest \ Priority}$
 - Motion Control, Tracking and Navigation etc
 - \circ Follow the wall, tracking trajectory

• Performance-critical: Quality of the mission

- Lowest Priority
- Computer Vision
- Taking pictures, run openCV

Alright, I can do this with three threads?

- Highest Priority
- $\circ \quad \ \ {\rm Least\ Priority,\ fastest\ response}$

Wait: How do I assign priorities to threads?

ronow the wan, tracking trajectory

- Performance-critical: Quality of the mission
 - Lowest Priority
 - Computer Vision
 - Taking pictures, run openCV

Use sched_priority to set the priority of threads?

pthread_attr_t attrSafety;

sched_param paramSafety;
pthread_attr_init (&attrSafety);
pthread_attr_getschedparam (&attrSafety, ¶mSafety);
paramSafety.sched_priority = 4;
pthread_attr_setschedparam (&attrSafety, ¶mSafety);

pthread_attr_t attrMotion; sched_param paramMotion; pthread_attr_init (&attrMotion); pthread_attr_getschedparam (&attrMotion, ¶mMotion); paramMotion.sched_priority = 3; pthread_attr_setschedparam (&attrMotion, ¶mMotion);

pthread_attr_t attrVision; sched_param paramVision; pthread_attr_init (&attrVision); pthread_attr_getschedparam (&attrVision, ¶mVision); paramVision.sched_priority = 2; pthread_attr_setschedparam (&attrVision, ¶mVision);

Use sched_priority to set the priority of threads?

pthread_attr_t attrSafety; sched_param paramSafety; pthread_attr_init (&attrSafety); pthread_attr_getschedparam (&attrSafety, ¶mSafety); paramSafety.sched_priority = 4;

Yay !! I can assign priorities now

pthread_attr_setschedparam (&attrMotion, ¶mMotion);

pthread_attr_t attrVision; sched_param paramVision; pthread_attr_init (&attrVision); pthread_attr_getschedparam (&attrVision, ¶mVision); paramVision.sched_priority = 2; pthread_attr_setschedparam (&attrVision, ¶mVision);

Use sched_priority to set the priority of threads?

pthread_attr_t attrSafety; sched_param paramSafety; pthread_attr_init (&attrSafety); pthread_attr_getschedparam (&attrSafety, ¶mSafety); paramSafety.sched_priority = 4;

What about periods of the tasks ?

pthread_attr_setschedparam (&attrMotion, ¶mMotion);

pthread_attr_t attrVision; sched_param paramVision; pthread_attr_init (&attrVision); pthread_attr_getschedparam (&attrVision, ¶mVision); paramVision.sched_priority = 2; pthread_attr_setschedparam (&attrVision, ¶mVision);

More on threading

- Put threads to sleep so that other threads can also run.
 - High priority thread should sleep less (e.g. 100 ms)
 - \circ ~ Low priority thread should sleep more (e.g. 2000 ms) ~

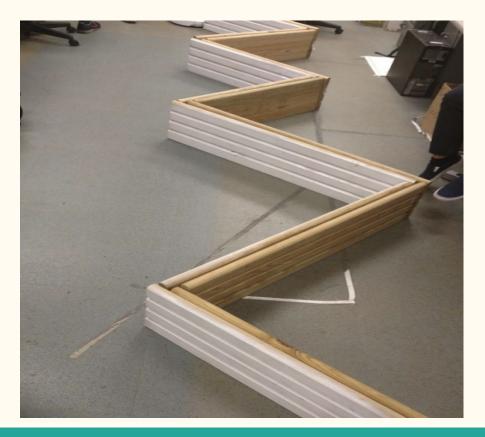
• The external thread runs separately so sleeping gives CPU to that thread to run.

Other Issues to Keep in Mind

- Use mutex between threads when using shared resource such as serial port
 - $\circ \quad \ \ {\rm Release \ mutex \ before \ going \ to \ sleep}$

• For MP2 you can take pictures inside the maze and analyze them outside the maze to save travel time.

- Find a sweet timing spot to take pictures
 - \circ Too frequent will increase travel time
 - \circ Too rare, you might not capture all the objects


Other Issues to Keep in Mind

- Overcurrent sensor may give false positives
 - \circ You might want to average or take median of values depending upon the window size

- Wall sensor
 - It has readings only when almost parallel to wall, maximum value and angle differ at different distance
 - What to do when signal reading is lost?

• More details can be found in the MP2 description.

Our Maze looks like this

Other Points to Ponder

• We have a multicore processor - Can an attacker launch some attack and hog the bus from another core ?

Thank you Q & A

Logistics

- Office Hours Tuesday and Thursday 1:00 pm 2:00pm SC 2325 and SC 2327
- Q & A Piazza and office hours
- Email: rtabish@illinois.edu
- 10/31 at 11:59:59 pm
- Demo using signup sheet which gets posted on piazza after the deadline of the MP.