MP4: Improve Your Navigation Using Feedback Control

By: Rohan Tabish

Farmer planting tree

Farmer	p	lanting	tree
--------	---	---------	------

Uncovers a maze

Farmer planting tree

Uncovers a maze

A research team is assembled to send a robot

Farmer planting tree

Uncovers a maze

A research team is assembled to send a robot

The maze is labeled as **archeological** site. So there are **requirements** that robot must follow.

- Requirement # 1: Look but do not touch
 - \circ $\;$ The robot should not run into or damage any object

- Requirement # 1: Look but do not touch
 - \circ $\,$ The robot should not run into or damage any object $\,$
- Requirement # 2: Protect yourself
 - The robot should avoid self-damage because their are cliffs and traps

- Requirement # 1: Look but do not touch
 - \circ $\,$ The robot should not run into or damage any object
- Requirement # 2: Protect yourself
 - The robot should avoid self-damage because their are cliffs and traps
- Requirement # 3: Run some analytics
 - Scientist want to download analytics tasks to the robot that show run while exploring the maze. The task runs analytics on the data captured by the robot.

- Requirement # 1: Look but do not touch
 - \circ $\,$ The robot should not run into or damage any object
- Requirement # 2: Protect yourself
 - The robot should avoid self-damage because their are cliffs and traps
- Requirement # 3: Run some analytics
 - Scientist want to download analytics tasks to the robot that show run while exploring the maze. The task runs analytics on the data captured by the robot.
- Requirement # 4: Finish as quickly as possible

• Safety-critical: Basic Survival/Safety

• Safety-critical: Basic Survival/Safety

• Mission-critical: the purpose of the mission

• Safety-critical: Basic Survival/Safety

• Mission-critical: the purpose of the mission

- Safety-critical: Basic Survival/Safety
 - Highest Priority
 - Lowest Period, fastest response
 - \circ Checking safety-related sensors, stop immediately if needed
- Mission-critical: the purpose of the mission

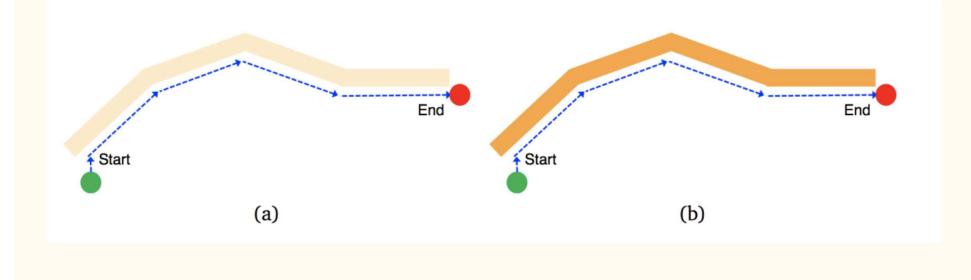
• Safety-critical: Basic Survival/Safety

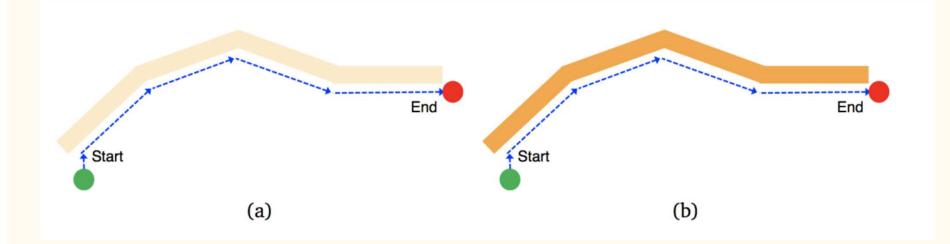
- Highest Priority
- \circ Lowest Period, fastest response
- \circ Checking safety-related sensors, stop immediately if needed

• Mission-critical: the purpose of the mission

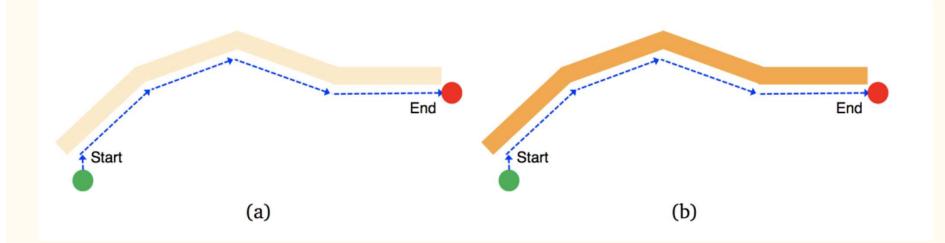
- Second Highest Priority
- Motion Control, Tracking and Navigation etc
- \circ Follow the wall, tracking trajectory

Performance 100

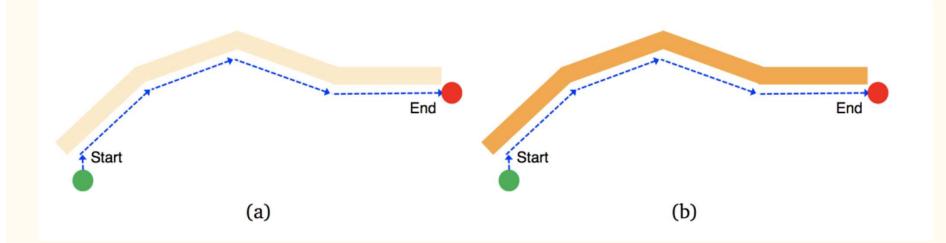

• Safety-critical: Basic Survival/Safety

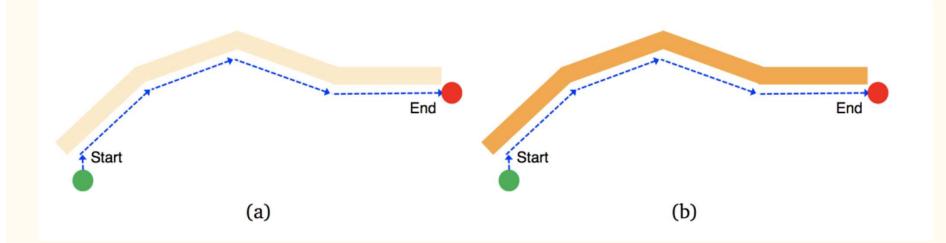

- Highest Priority
- \circ Lowest Period, fastest response
- Checking safety-related sensors, stop immediately if needed

• Mission-critical: the purpose of the mission


- Second Highest Priority
- Motion Control, Tracking and Navigation etc
- Follow the wall, tracking trajectory

- Lowest Priority
- \circ How many times hit the wall
- \circ Time to finish



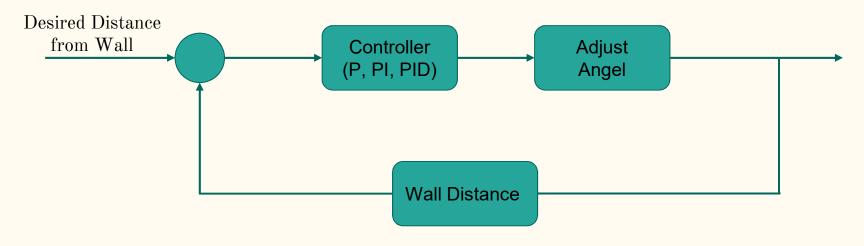

• Maze will either be all white or brown walls

- Maze will either be all white or brown walls
- Minimize bumps to the wall every bump takes away 50 % of score of "Number of bumps"

- Maze will either be all white or brown walls
- Minimize bumps to the wall every bump takes away 50 % of score of "Number of bumps"
- Complete in 110 seconds every second 10% of the score of "Time in maze" requirement is taken away

- Maze will either be all white or brown walls
- Minimize bumps to the wall every bump takes away 50 % of score of "Number of bumps"
- Complete in 110 seconds every second 10% of the score of "Time in maze" requirement is taken away.
- Cliff Signal, Overcurrent, and Wheel drop sensors, and take appropriate actions when they trigger

MP4 - Controller Design

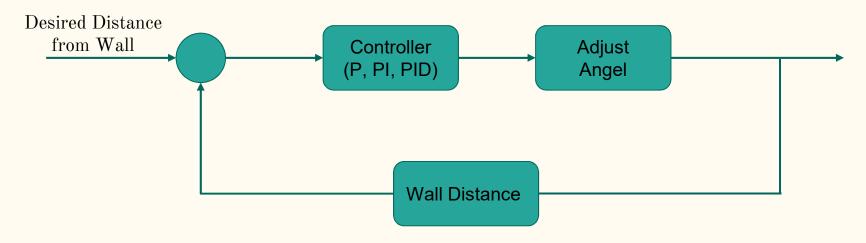


Output = K * Input

 \rightarrow Input is measured wall sensor value

 \rightarrow Output: Turn angle (adjustment)

MP4 - Controller Design

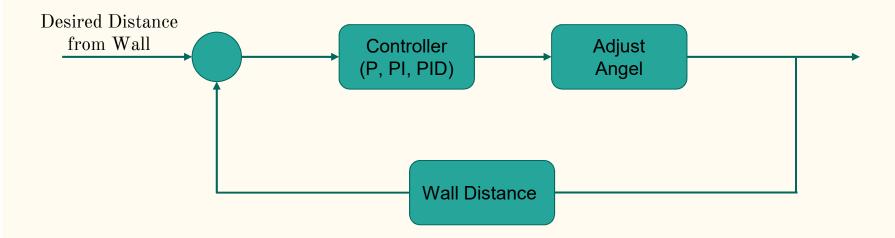

Output = K * Input

 \rightarrow Input is measured wall sensor value

 \rightarrow Output: Turn angle (adjustment)

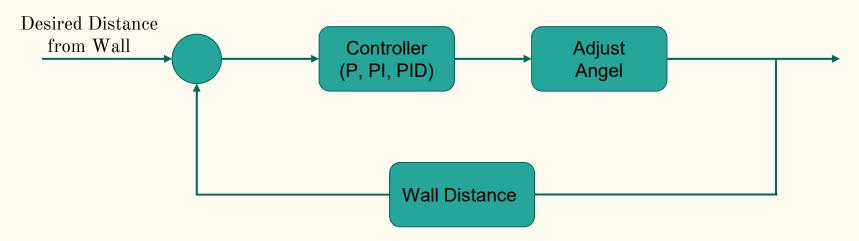
The controller is invoked every period T.

MP4 - Controller Design

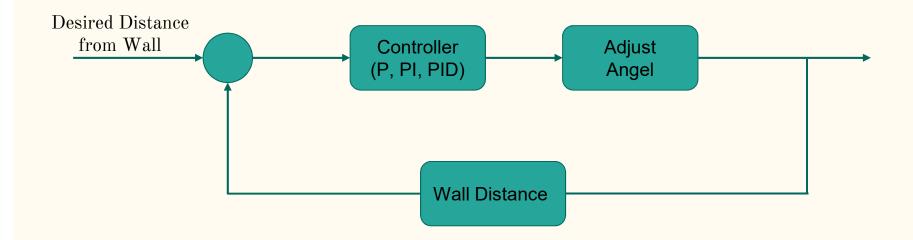

Output = K * Input

- \rightarrow Input is measured wall sensor value
- \rightarrow Output: Turn angle (adjustment)

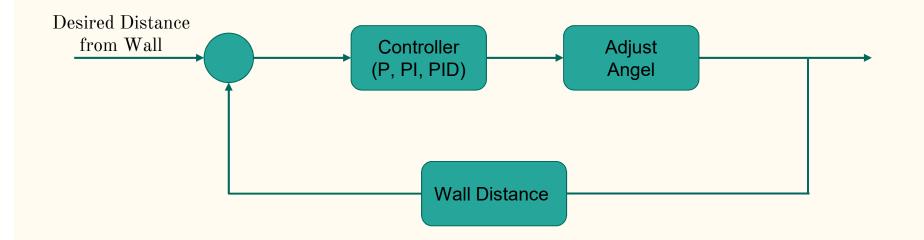
The controller is invoked every period T.


Pick the correct T depending on the speed of the robot.

MP4 - How to Determine K


Control theory offers a way to determine K, given a selected value of controller period T.

MP4 - How to Determine K - Model the controlled process:


- The model should describe an approximate relation between the angle adjustment done by the controller and resulting distance to the wall
- How distance will change when the robot turns

MP4 - How to Determine K - Model the Wall Sensor

- Sensor model should describe the approximate relation between physical distance to the wall and sensor output.
- Empirically by moving robot near and away from the wall.

MP4 - How to Determine K - Developing Controller

- Develop the controller Which controller you implemented P, PI, PID
- Remember the K value for each controller will be different. K_p, K_i and K_d

Grading - Read More Details in the MP Description

	Requirement	Points
1	Design Report	
1a	Modeling the Robot	2
1b	Profiling the Sensor	2
1c	Controller Design (from Phase and Gain Equations)	2
	Report Total	6
2	Implemetation	
2a	Time in Maze	2
2b	Number of Bumps	2
	Implemetation Total	4
	Total	10

Thank You