What is Cyber-physical
Computing: Basic Concepts
and Application Examples

A tale of Interactive Complexity

in Systems that Interact with the
Physical World... and with People!

Early History of CPS:
i The Beginnings

NSF Workshop on Cyber-Physical Systems, October 16-17, 2006, Austin, TX.

National Meeting on Beyond SCADA: Networked Embedded Control for Cyber Physical
Systems, November 8-9, 2006, Pittsburgh, PA.

National Workshop on High-Confidence Software Platforms for Cyber-Physical Systems
(HCSP-CPS), November 30 - December 1, 2006, Alexandria, VA.

NSF Industry Round-Table on Cyber-Physical Systems, May 17, 2007, Arlington, VA.

Joint Workshop On High-Confidence Medical Devices, Software, and Systems (HCMDSS) and
Medical Device Plug-and-Play (MD PnP) Interoperability, June 25-27, 2007, Boston, MA.

National Workshop on Composable Systems Technologies for High-Confidence Cyber-
Physical Systems, July 9-10, 2007, Arlington, VA.

National Workshop on High-Confidence Automotive Cyber-Physical Systems, April 3-4, 2008,
Troy, MI.

CPSWeek, April 21-24, 2008, St. Louis, MO.
CPS Summit, April 25, 2008, St. Louis, MO: NSF Announces new CPS Initiative

The First International Workshop on Cyber-Physical Systems, International Conference on
Distributed Computing Systems (ICDCS), June 20, 2008, Beijing, CHINA.

Workshop on CPS Applications in Smart Power Systems, Raleigh, NC, 2011

Early History of CPS:
i The Beginnings

NSF Workshop on Cyber-Physical Systems, October 16-17, 2006, Austin, TX.

National Meeting on Beyond SCADA: Networked Embedded Control for Cyber Physical
Systems, November 8-9, 2006, Pittsburgh, PA.

National Workshop on High-Confidence Software Platform \Q&)er—Physical Systems
(HCSP-CPS), November 30 - December 1, 2006, Alexan \Qﬁ

NSF Industry Round-Table on Cyber-Physical Sys y 17, 2007, Arlington, VA.

Joint Workshop On High-Confidence Medie& ces, Software, and Systems (HCMDSS) and
Medical Device Plug-and-Play (MD PnP) Interbperability, June 25-27, 2007, Boston, MA.

National Workshop on Composable Systems Technologies for High-Confidence Cyber-
Physical Systems, July 9-10, 2007, Arlington, VA.

National Workshop on High-Confidence Automotive Cyber-Physical Systems, April 3-4, 2008,
Troy, MI.

CPSWeek, April 21-24, 2008, St. Louis, MO.
CPS Summit, April 25, 2008, St. Louis, MO: NSF Announces new CPS Initiative

The First International Workshop on Cyber-Physical Systems, International Conference on
Distributed Computing Systems (ICDCS), June 20, 2008, Beijing, CHINA.

Workshop on CPS Applications in Smart Power Systems, Raleigh, NC, 2011

Early History of CPS:
i The Beginnings

NSF Workshop on Cyber-Physical Systems, October 16-17, 2006, Austin, TX.

National Meeting on Beyond SCADA: Networked Embedded Control for Cyber Physical
Systems, November 8-9, 2006, Pittsburgh, PA.

National Workshop on High-Confidence Software Platforms for Cyber-Physical Systems
(HCSP-CPS), November 30 - December 1, 2006, Alexandria, VA.

NSF Industry Round-Table on Cyber-Physical Systems, May 17, 2007, Arlington, VA.

Joint Workshop On High-Confidence Medical Devices, Software, and Systems (HCMDSS) and
Medical Device Plug-and-Play (MD PnP) Interoperability, June 25-27, 2007, Boston, MA.

National Workshop on Composable Systems Technologies for High-Confidence Cyber-
Physical Systems, July 9-10, 2007, Arlington, VA.

National Workshop on High-Confidence Automotive Cybe&:{ |81 Systems, April 3-4, 2008,
Troy, MI.

O
CPSWeek, April 21-24, 2008, St. Louis, MO. ?\\c‘
CPS Summit, April 25, 2008, St. Louis, MO: nounces new CPS Initiative

The First International Workshop on Cyber-Physical Systems, International Conference on
Distributed Computing Systems (ICDCS), June 20, 2008, Beijing, CHINA.

Workshop on CPS Applications in Smart Power Systems, Raleigh, NC, 2011

Original Focus: Mission-critical Systems

Building Timely, Predictable, Reliable Systems

i Two Classical Challenges

ns Establish Functional Correctness: How
to build functionally correct systems from
possibly flawed components?

n Establish Temporal Correctness: \What
are the analytic foundations for robust
timing guarantees in highly dynamic, time-
critical software systems?

Rate of Innovation and
i Development Time Issues

= Early in the 20% century products had a
20-30 year life-span before new “versions”
were developed

= At present, a product is obsolete in 2-3
years at most

= No time to discover and “debug” all possible
problems

= New problems introduced in new versions

= Component reuse generates additional
problems

Software: Increasingly the
i Primary Cause of System Failure

= Arbitrary component interactions
unconstrained by physical laws of nature
(algorithms can do anything)

= Potential for high interactive complexity

= Fast error propagation (at computing device
speed)
= Potential for tight coupling

= Software that interacts with the physical
world is buggy!

Typical Isolation Techniques

= Abstraction

= Separation of concerns

Abstraction

<

N

Separate virtual machines or

protection domains

Transport
Network

Link Kernel

Physical Virtualization

i Abstraction > Specialization

= Complexity

- More levels of abstraction
- Narrower specialization

- More details are “abstracted away”

- Myopic view. Less knowledge of
possible adverse interactions
- More potential for interaction
or incompatibility errors

The Curse of Component Re-use
The Ariane 5 Explosion

= On June 4, 1996, the
maiden flight of the
European Ariane 5
launcher crashed about 40
seconds after takeoff (0.5
Billion Dollars)

= Cause of problem?

= An inertial reference software component.

= Not needed during flight. Should be stopped before takeoff but is
allowed to operate for up to 50 additional seconds

= Component was designed for Ariane 4. Ariane 5 was a faster system.
Velocity variable overflowed.

= Overflow causes an exception and crashes the software

Interactive Complexity Bugs
Tesla Autopilot Crash

(VhatstHappens When Autepilot:So
o

=

AUTOPILOT SOFTWARE CRASHING Yo
AND REBOOTING WHILE DRIVING *

Example 1: Interactive Complexity
i in Distributed Protocols

= Interactive complexity means:

= Simple individually insignificant failures interact
to compound into system failures, or even...

= Sets of correctly operating components interact
to produce a system failure

= Example:
Shortest hop routing
Adaptive rate control

i Example 1:

= Shortest hop routing
= Find shorter path (fewer hops that are longer)

= Long wireless hops - poor channel quality

= Adaptive rate control
= Reduce transmission rate to improve quality

= Reduced transmission rate
—> longer transmission range

Example 2:

Correlated failure modes between
“independent components”

= Localization (determlnlnﬁ a node’s location) fails in
a correlated manner with failure to synchronize
clocks. Why?

= Note: None of the two components uses the other

Example 2:

Correlated failure modes between

“independent components”

= Localization (determlnlnﬂ a node’s location) fails in

a correlated manner wit
clocks. Why?

= Note: None of the two components uses t
= Answer: communication problems. Bot

failure to synchronize

ne other
N

subsystems rely on distributed protoco
I

Poor performance is
Compounded by two
Correlated failures

S

Example 3:
More on hidden interactions

= Magnetic tracking system operates perfectly in
calm weather but fails under strong wind
conditions. Why?

= Wind should not change magnetic sensor reading

Example 3:
More on hidden interactions

= Magnetic tracking system operates perfectly in
calm weather but fails under strong wind
conditions. Why?

= Wind should not change magnetic sensor reading

= Explanation
= Wind caused node antenna to vibrate

= Moving (metal) antenna caused a lot of noise on
the magnetic sensor

= Noise filter adapted noise threshold to remove
background noise (and in this case the signal too)

Example 4: Three Mile Island
Nuclear Reactor Failure

Core temperature and pressure _
continue to build up —— Coolant pressure relief valve opens

_ Rt to reduce pressure -
Core overheating triggers emergency Pressure drops. Valve is stuck open.

shutdown :
. N . Coolant boils off. Core temperature
Valve failure indicator light turns on fises. Reaction resumes.

but is occluded by repair tag on

: N
another device X Core is flooded with water
Failure to open valves \

Water at very high

Open emergency feed-water pumps temperature oxydizes

from emergency tank to cool coolant metal fuel rod

He_at exchange stops betwe_en coating (rusting)
primary and secondary cooling /
/ Systems. Primary overheats.

_ Hydrogen is released eventually
. Stop secondary coolant flow and turbine

leading to explosion

False alarm of minor secondary
system coolant leakage through seal

The Fukushima Reactor

‘L Failure?

= In April 2011, Japan was hit with an Earthquake followed
by a Tsunami. This led to a series of events that
ultimately caused a level-7 meltdown in the Fukushima
Nuclear Reactor. Can you show the chain of events that

i Ensuring Software Correctness

= The physical world has no “reset” button
= When failures occur, they can be costly!

= Must reduce:

= Interactive complexity

= Unexpected interactions between seemingly correct
components

= Coupling

= Fast propagation of effects of failure to other system
components

Designing Complex Systems
i (Example: Air-traffic control)

= Reduce interactive complexity

= Air traffic is restricted to non-intersecting
“corridors” that separate flight paths in the sky

= Reduce coupling

= Separate aircraft by a substantial distance to
reduce cascaded failure effects (think: multiple-
car pile-ups in freeway accidents)

‘L Interaction Examples

Interaction Examples

= Function calls

= Resource sharing

= One module crashes = overwrites memory of another
- second “unrelated” module crashes (analogy to
physical proximity and correlated damage)

= One module is overloaded - another starves

= Timing and synchronization constraints

= Precedence constraints (one module must execute
before another)

= Exclusion constraints (cannot operate at the same time)

= Assumptions
« [thought you submitted our project report?
= No, I thought you did?

Question: How to Build
i Reliable Software?

= Common approaches:
= Tracing, source level debugging
= Simulation/emulation
= Network error status reporting
= Log and replay

= Hard to catch all bugs.

Candidate Approach:
i Formal Methods

= EXxpress safety properties (e.g., task A will never
miss its deadline)

= Prove that safety properties hold
« If proof fails, counter example is presented (a
sequence of events that leads to failure)
= Problem:

= Proofs require axioms. Axioms may make incorrect
assumptions (e.g., circular sensing range)

« Interactions must be explicitly modeled. Failure to
model interactions (e.g., between wind and magnetic
sensor) may overlook some failure modes.

Living with

Buggy Systems

= 1T errors cannot be avoided (even using
formal methods), we must design systems to

tolerate them

= Architectures for “living with bugs”
» Fast diagnosis and recovery

= [Sssues

= Problem must be observable (or else cannot diagnose)

=« Observation must

be in time so that recovery is

possible (observing that you forgot your parachute

after you jump wi
= Systems with high
scales will likely ta

| not help you)
y auto-correlated state on long time-

ke long to recover

Simplicity to Conquer Complexity

i Lui Sha

= Elements of a good design
= Simple safety core
= Complex enhanced mission functionality
=« Formal proof of core correctness

= Well formed dependency (core may use but will
not depend on any other components)

i Example: A Sorting Exercise

= Sorting:
= Bubble sort: easy to write but slower, O(n?)
= Quick sort: faster, O(n log(n)), but more complicated to
write
= Joe remembers how to do bubble sort but is not
perfectly sure of quick sort (has a 50% chance of
getting it right).
= Joe is asked to write a sorting routine:
= Correct and fast: A
= Correct but slow: B
= Incorrect: F

i Example: A Sorting Exercise

= Sorting:
= Bubble sort: easy to write but slower, O(n?)
= Quick sort: faster, O(n log(n)), but more complicated to

write

= Joe remembers how to do bubble sort but is not
perfectly sure of quick sort (has a 50% chance of
getting it right).

= Joe is asked to write a sorting routine: \S“a’teg\’?

= Correct and fast: A | O\,‘){\ma
= Correct but slow: B 1S ‘)065
= Incorrect: F V\I‘(\

i Example: A Sorting Exercise

= Sorting:
= Bubble sort: easy to write but slower, O(n?)
= Quick sort: faster, O(n log(n)), but more complicated to

write

= Joe remembers how to do bubble sort but is not
perfectly sure of quick sort (has a 50% chance of
getting it right).

= Joe is asked to write a sorting routine: \S“a’teg\’?

= Correct and fast: A | O\,‘){\ma

= Correct but slow: B \S J0e° . .
“\‘\(\a’ﬁ. \ Critical requirement:

= Incorrect: F Must pass!

i Solution

= Simplicity to “contro

input

III

Joe will get at least a “B".

O(n log(n))

-

quick-sort

O(n) if input is sorted

—

complexity

output

bubble-sort

O(n?) otherwise

i Solution

= Key property

= Use complex but efficient solution in the
common case

» If the complex solution fails, catch the failure
and switch to the simple (less efficient) but safe
option

Joe will get at least a “B”.

O(n log(n)) O(n) if input is sorted

input 1. quick-sort —{ bubble-sort outpul

O(n?) otherwise

i Asimov Laws of Robotics

= What are the implications on software
system design for the robot?

