
What is Cyber-physical 
Computing: Basic Concepts 
and Application Examples

A tale of Interactive Complexity 
in Systems that Interact with the 
Physical World… and with People!



Early History of CPS: 
The Beginnings

 NSF Workshop on Cyber-Physical Systems, October 16-17, 2006, Austin, TX.
 National Meeting on Beyond SCADA: Networked Embedded Control for Cyber Physical 

Systems, November 8-9, 2006, Pittsburgh, PA.
 National Workshop on High-Confidence Software Platforms for Cyber-Physical Systems 

(HCSP-CPS), November 30 - December 1, 2006, Alexandria, VA.
 NSF Industry Round-Table on Cyber-Physical Systems, May 17, 2007, Arlington, VA.
 Joint Workshop On High-Confidence Medical Devices, Software, and Systems (HCMDSS) and 

Medical Device Plug-and-Play (MD PnP) Interoperability, June 25-27, 2007, Boston, MA.
 National Workshop on Composable Systems Technologies for High-Confidence Cyber-

Physical Systems, July 9-10, 2007, Arlington, VA.
 National Workshop on High-Confidence Automotive Cyber-Physical Systems, April 3-4, 2008, 

Troy, MI.
 CPSWeek, April 21-24, 2008, St. Louis, MO.
 CPS Summit, April 25, 2008, St. Louis, MO: NSF Announces new CPS Initiative
 The First International Workshop on Cyber-Physical Systems, International Conference on 

Distributed Computing Systems (ICDCS), June 20, 2008, Beijing, CHINA.
 Workshop on CPS Applications in Smart Power Systems, Raleigh, NC, 2011
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Original Focus: Mission-critical Systems

Building Timely, Predictable, Reliable Systems



Two Classical Challenges

 Establish Functional Correctness: How 
to build functionally correct systems from 
possibly flawed components?

 Establish Temporal Correctness: What 
are the analytic foundations for robust 
timing guarantees in highly dynamic, time-
critical software systems?



Rate of Innovation and 
Development Time Issues

 Early in the 20th century products had a 
20-30 year life-span before new “versions” 
were developed

 At present, a product is obsolete in 2-3 
years at most
 No time to discover and “debug” all possible 

problems
 New problems introduced in new versions
 Component reuse generates additional 

problems



Software: Increasingly the 
Primary Cause of System Failure

 Arbitrary component interactions 
unconstrained by physical laws of nature 
(algorithms can do anything)
 Potential for high interactive complexity

 Fast error propagation (at computing device 
speed)
 Potential for tight coupling

 Software that interacts with the physical 
world is buggy!



Typical Isolation Techniques
 Abstraction 
 Separation of concerns

Physical 

Link

Network

Transport

Abstraction

Kernel

Virtualization

Separate virtual machines or 
protection domains



Abstraction  Specialization
 Complexity 

 More levels of abstraction 
 Narrower specialization 
 More details are “abstracted away” 
 Myopic view. Less knowledge of

possible adverse interactions 
 More potential for interaction 

or incompatibility errors



The Curse of Component Re-use
The Ariane 5 Explosion

 On June 4, 1996, the 
maiden flight of the 
European Ariane 5 
launcher crashed about 40 
seconds after takeoff (0.5 
Billion Dollars)

 Cause of problem?
 An inertial reference software component.

 Not needed during flight. Should be stopped before takeoff but is 
allowed to operate for up to 50 additional seconds

 Component was designed for Ariane 4. Ariane 5 was a faster system. 
Velocity variable overflowed.

 Overflow causes an exception and crashes the software 



Interactive Complexity Bugs
Tesla Autopilot Crash



Example 1: Interactive Complexity 
in Distributed Protocols

 Interactive complexity means: 
 Simple individually insignificant failures interact 

to compound into system failures, or even… 
 Sets of correctly operating components interact 

to produce a system failure
 Example:

 Shortest hop routing
 Adaptive rate control



Example 1:
 Shortest hop routing

 Find shorter path (fewer hops that are longer)
 Long wireless hops  poor channel quality
 Adaptive rate control

 Reduce transmission rate to improve quality
 Reduced transmission rate 

 longer transmission range



Example 2:
Correlated failure modes between 
“independent components”

 Localization (determining a node’s location) fails in 
a correlated manner with failure to synchronize 
clocks. Why?
 Note: None of the two components uses the other

Localization Clock synchronization

Tracking



Example 2:
Correlated failure modes between 
“independent components”

 Localization (determining a node’s location) fails in 
a correlated manner with failure to synchronize 
clocks. Why?
 Note: None of the two components uses the other

 Answer: communication problems. Both 
subsystems rely on distributed protocols

Localization Clock synchronization

Tracking
Poor performance is
Compounded by two
Correlated failures



Example 3: 
More on hidden interactions

 Magnetic tracking system operates perfectly in 
calm weather but fails under strong wind 
conditions. Why?
 Wind should not change magnetic sensor reading



Example 3: 
More on hidden interactions

 Magnetic tracking system operates perfectly in 
calm weather but fails under strong wind 
conditions. Why?
 Wind should not change magnetic sensor reading

 Explanation
 Wind caused node antenna to vibrate
 Moving (metal) antenna caused a lot of noise on 

the magnetic sensor
 Noise filter adapted noise threshold to remove 

background noise (and in this case the signal too)



Example 4: Three Mile Island 
Nuclear Reactor Failure

False alarm of minor secondary 
system coolant leakage through seal

Stop secondary coolant flow and turbine

Heat exchange stops between 
primary and secondary cooling
Systems. Primary overheats.

Open emergency feed-water pumps 
from emergency tank to cool coolant 

Failure to open valves

Valve failure indicator light turns on 
but is occluded by repair tag on 
another device

Core overheating triggers emergency 
shutdown

Core temperature and pressure 
continue to build up Coolant pressure relief valve opens 

to reduce pressure
Pressure drops. Valve is stuck open. 
Coolant boils off. Core temperature 
rises. Reaction resumes.

Core is flooded with water

Water at very high 
temperature oxydizes 
metal fuel rod 
coating (rusting) 

Hydrogen is released eventually 
leading to explosion 



The Fukushima Reactor 
Failure?

 In April 2011, Japan was hit with an Earthquake followed 
by a Tsunami. This led to a series of events that 
ultimately caused a level-7 meltdown in the Fukushima 
Nuclear Reactor. Can you show the chain of events that 
led to the meltdown?



Ensuring Software Correctness
 The physical world has no “reset” button

 When failures occur, they can be costly!
 Must reduce:

 Interactive complexity
 Unexpected interactions between seemingly correct 

components
 Coupling

 Fast propagation of effects of failure to other system 
components 



Designing Complex Systems
(Example: Air-traffic control)

 Reduce interactive complexity
 Air traffic is restricted to non-intersecting 

“corridors” that separate flight paths in the sky
 Reduce coupling

 Separate aircraft by a substantial distance to 
reduce cascaded failure effects (think: multiple-
car pile-ups in freeway accidents)



Interaction Examples
 ??



Interaction Examples
 Function calls
 Resource sharing

 One module crashes  overwrites memory of another 
 second “unrelated” module crashes (analogy to 
physical proximity and correlated damage)

 One module is overloaded  another starves
 Timing and synchronization constraints

 Precedence constraints (one module must execute 
before another)

 Exclusion constraints (cannot operate at the same time)
 Assumptions 

 I thought you submitted our project report?
 No, I thought you did?



Question: How to Build 
Reliable Software?

 Common approaches:
 Tracing, source level debugging
 Simulation/emulation
 Network error status reporting
 Log and replay

 Hard to catch all bugs.



Candidate Approach:
Formal Methods

 Express safety properties (e.g., task A will never 
miss its deadline)

 Prove that safety properties hold
 If proof fails, counter example is presented (a 

sequence of events that leads to failure)
 Problem: 

 Proofs require axioms. Axioms may make incorrect 
assumptions (e.g., circular sensing range)

 Interactions must be explicitly modeled. Failure to 
model interactions (e.g., between wind and magnetic 
sensor) may overlook some failure modes.  



Living with Buggy Systems
 If errors cannot be avoided (even using 

formal methods), we must design systems to 
tolerate them
 Architectures for “living with bugs”
 Fast diagnosis and recovery
 Issues

 Problem must be observable (or else cannot diagnose)
 Observation must be in time so that recovery is 

possible (observing that you forgot your parachute 
after you jump will not help you)

 Systems with highly auto-correlated state on long time-
scales will likely take long to recover    



Simplicity to Conquer Complexity 
Lui Sha

 Elements of a good design
 Simple safety core
 Complex enhanced mission functionality
 Formal proof of core correctness
 Well formed dependency (core may use but will 

not depend on any other components)



Example: A Sorting Exercise
 Sorting:

 Bubble sort: easy to write but slower, O(n2)
 Quick sort: faster, O(n log(n)), but more complicated to 

write 
 Joe remembers how to do bubble sort but is not 

perfectly sure of quick sort (has a 50% chance of 
getting it right). 

 Joe is asked to write a sorting routine:
 Correct and fast: A
 Correct but slow: B
 Incorrect: F
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Example: A Sorting Exercise
 Sorting:

 Bubble sort: easy to write but slower, O(n2)
 Quick sort: faster, O(n log(n)), but more complicated to 

write 
 Joe remembers how to do bubble sort but is not 

perfectly sure of quick sort (has a 50% chance of 
getting it right). 

 Joe is asked to write a sorting routine:
 Correct and fast: A
 Correct but slow: B
 Incorrect: F

Critical requirement: 
Must pass!



Solution
 Simplicity to “control” complexity



Solution

 Key property
 Use complex but efficient solution in the 

common case
 If the complex solution fails, catch the failure 

and switch to the simple (less efficient) but safe 
option 



Asimov Laws of Robotics
 What are the implications on software 

system design for the robot?


