
What is Cyber-physical
Computing: Basic Concepts
and Application Examples

A tale of Interactive Complexity
in Systems that Interact with the
Physical World… and with People!

Early History of CPS:
The Beginnings

 NSF Workshop on Cyber-Physical Systems, October 16-17, 2006, Austin, TX.
 National Meeting on Beyond SCADA: Networked Embedded Control for Cyber Physical

Systems, November 8-9, 2006, Pittsburgh, PA.
 National Workshop on High-Confidence Software Platforms for Cyber-Physical Systems

(HCSP-CPS), November 30 - December 1, 2006, Alexandria, VA.
 NSF Industry Round-Table on Cyber-Physical Systems, May 17, 2007, Arlington, VA.
 Joint Workshop On High-Confidence Medical Devices, Software, and Systems (HCMDSS) and

Medical Device Plug-and-Play (MD PnP) Interoperability, June 25-27, 2007, Boston, MA.
 National Workshop on Composable Systems Technologies for High-Confidence Cyber-

Physical Systems, July 9-10, 2007, Arlington, VA.
 National Workshop on High-Confidence Automotive Cyber-Physical Systems, April 3-4, 2008,

Troy, MI.
 CPSWeek, April 21-24, 2008, St. Louis, MO.
 CPS Summit, April 25, 2008, St. Louis, MO: NSF Announces new CPS Initiative
 The First International Workshop on Cyber-Physical Systems, International Conference on

Distributed Computing Systems (ICDCS), June 20, 2008, Beijing, CHINA.
 Workshop on CPS Applications in Smart Power Systems, Raleigh, NC, 2011

Early History of CPS:
The Beginnings

 NSF Workshop on Cyber-Physical Systems, October 16-17, 2006, Austin, TX.
 National Meeting on Beyond SCADA: Networked Embedded Control for Cyber Physical

Systems, November 8-9, 2006, Pittsburgh, PA.
 National Workshop on High-Confidence Software Platforms for Cyber-Physical Systems

(HCSP-CPS), November 30 - December 1, 2006, Alexandria, VA.
 NSF Industry Round-Table on Cyber-Physical Systems, May 17, 2007, Arlington, VA.
 Joint Workshop On High-Confidence Medical Devices, Software, and Systems (HCMDSS) and

Medical Device Plug-and-Play (MD PnP) Interoperability, June 25-27, 2007, Boston, MA.
 National Workshop on Composable Systems Technologies for High-Confidence Cyber-

Physical Systems, July 9-10, 2007, Arlington, VA.
 National Workshop on High-Confidence Automotive Cyber-Physical Systems, April 3-4, 2008,

Troy, MI.
 CPSWeek, April 21-24, 2008, St. Louis, MO.
 CPS Summit, April 25, 2008, St. Louis, MO: NSF Announces new CPS Initiative
 The First International Workshop on Cyber-Physical Systems, International Conference on

Distributed Computing Systems (ICDCS), June 20, 2008, Beijing, CHINA.
 Workshop on CPS Applications in Smart Power Systems, Raleigh, NC, 2011

Early History of CPS:
The Beginnings

 NSF Workshop on Cyber-Physical Systems, October 16-17, 2006, Austin, TX.
 National Meeting on Beyond SCADA: Networked Embedded Control for Cyber Physical

Systems, November 8-9, 2006, Pittsburgh, PA.
 National Workshop on High-Confidence Software Platforms for Cyber-Physical Systems

(HCSP-CPS), November 30 - December 1, 2006, Alexandria, VA.
 NSF Industry Round-Table on Cyber-Physical Systems, May 17, 2007, Arlington, VA.
 Joint Workshop On High-Confidence Medical Devices, Software, and Systems (HCMDSS) and

Medical Device Plug-and-Play (MD PnP) Interoperability, June 25-27, 2007, Boston, MA.
 National Workshop on Composable Systems Technologies for High-Confidence Cyber-

Physical Systems, July 9-10, 2007, Arlington, VA.
 National Workshop on High-Confidence Automotive Cyber-Physical Systems, April 3-4, 2008,

Troy, MI.
 CPSWeek, April 21-24, 2008, St. Louis, MO.
 CPS Summit, April 25, 2008, St. Louis, MO: NSF Announces new CPS Initiative
 The First International Workshop on Cyber-Physical Systems, International Conference on

Distributed Computing Systems (ICDCS), June 20, 2008, Beijing, CHINA.
 Workshop on CPS Applications in Smart Power Systems, Raleigh, NC, 2011

Original Focus: Mission-critical Systems

Building Timely, Predictable, Reliable Systems

Two Classical Challenges

 Establish Functional Correctness: How
to build functionally correct systems from
possibly flawed components?

 Establish Temporal Correctness: What
are the analytic foundations for robust
timing guarantees in highly dynamic, time-
critical software systems?

Rate of Innovation and
Development Time Issues

 Early in the 20th century products had a
20-30 year life-span before new “versions”
were developed

 At present, a product is obsolete in 2-3
years at most
 No time to discover and “debug” all possible

problems
 New problems introduced in new versions
 Component reuse generates additional

problems

Software: Increasingly the
Primary Cause of System Failure

 Arbitrary component interactions
unconstrained by physical laws of nature
(algorithms can do anything)
 Potential for high interactive complexity

 Fast error propagation (at computing device
speed)
 Potential for tight coupling

 Software that interacts with the physical
world is buggy!

Typical Isolation Techniques
 Abstraction
 Separation of concerns

Physical

Link

Network

Transport

Abstraction

Kernel

Virtualization

Separate virtual machines or
protection domains

Abstraction  Specialization
 Complexity

 More levels of abstraction
 Narrower specialization
 More details are “abstracted away”
 Myopic view. Less knowledge of

possible adverse interactions
 More potential for interaction

or incompatibility errors

The Curse of Component Re-use
The Ariane 5 Explosion

 On June 4, 1996, the
maiden flight of the
European Ariane 5
launcher crashed about 40
seconds after takeoff (0.5
Billion Dollars)

 Cause of problem?
 An inertial reference software component.

 Not needed during flight. Should be stopped before takeoff but is
allowed to operate for up to 50 additional seconds

 Component was designed for Ariane 4. Ariane 5 was a faster system.
Velocity variable overflowed.

 Overflow causes an exception and crashes the software

Interactive Complexity Bugs
Tesla Autopilot Crash

Example 1: Interactive Complexity
in Distributed Protocols

 Interactive complexity means:
 Simple individually insignificant failures interact

to compound into system failures, or even…
 Sets of correctly operating components interact

to produce a system failure
 Example:

 Shortest hop routing
 Adaptive rate control

Example 1:
 Shortest hop routing

 Find shorter path (fewer hops that are longer)
 Long wireless hops  poor channel quality
 Adaptive rate control

 Reduce transmission rate to improve quality
 Reduced transmission rate

 longer transmission range

Example 2:
Correlated failure modes between
“independent components”

 Localization (determining a node’s location) fails in
a correlated manner with failure to synchronize
clocks. Why?
 Note: None of the two components uses the other

Localization Clock synchronization

Tracking

Example 2:
Correlated failure modes between
“independent components”

 Localization (determining a node’s location) fails in
a correlated manner with failure to synchronize
clocks. Why?
 Note: None of the two components uses the other

 Answer: communication problems. Both
subsystems rely on distributed protocols

Localization Clock synchronization

Tracking
Poor performance is
Compounded by two
Correlated failures

Example 3:
More on hidden interactions

 Magnetic tracking system operates perfectly in
calm weather but fails under strong wind
conditions. Why?
 Wind should not change magnetic sensor reading

Example 3:
More on hidden interactions

 Magnetic tracking system operates perfectly in
calm weather but fails under strong wind
conditions. Why?
 Wind should not change magnetic sensor reading

 Explanation
 Wind caused node antenna to vibrate
 Moving (metal) antenna caused a lot of noise on

the magnetic sensor
 Noise filter adapted noise threshold to remove

background noise (and in this case the signal too)

Example 4: Three Mile Island
Nuclear Reactor Failure

False alarm of minor secondary
system coolant leakage through seal

Stop secondary coolant flow and turbine

Heat exchange stops between
primary and secondary cooling
Systems. Primary overheats.

Open emergency feed-water pumps
from emergency tank to cool coolant

Failure to open valves

Valve failure indicator light turns on
but is occluded by repair tag on
another device

Core overheating triggers emergency
shutdown

Core temperature and pressure
continue to build up Coolant pressure relief valve opens

to reduce pressure
Pressure drops. Valve is stuck open.
Coolant boils off. Core temperature
rises. Reaction resumes.

Core is flooded with water

Water at very high
temperature oxydizes
metal fuel rod
coating (rusting)

Hydrogen is released eventually
leading to explosion

The Fukushima Reactor
Failure?

 In April 2011, Japan was hit with an Earthquake followed
by a Tsunami. This led to a series of events that
ultimately caused a level-7 meltdown in the Fukushima
Nuclear Reactor. Can you show the chain of events that
led to the meltdown?

Ensuring Software Correctness
 The physical world has no “reset” button

 When failures occur, they can be costly!
 Must reduce:

 Interactive complexity
 Unexpected interactions between seemingly correct

components
 Coupling

 Fast propagation of effects of failure to other system
components

Designing Complex Systems
(Example: Air-traffic control)

 Reduce interactive complexity
 Air traffic is restricted to non-intersecting

“corridors” that separate flight paths in the sky
 Reduce coupling

 Separate aircraft by a substantial distance to
reduce cascaded failure effects (think: multiple-
car pile-ups in freeway accidents)

Interaction Examples
 ??

Interaction Examples
 Function calls
 Resource sharing

 One module crashes  overwrites memory of another
 second “unrelated” module crashes (analogy to
physical proximity and correlated damage)

 One module is overloaded  another starves
 Timing and synchronization constraints

 Precedence constraints (one module must execute
before another)

 Exclusion constraints (cannot operate at the same time)
 Assumptions

 I thought you submitted our project report?
 No, I thought you did?

Question: How to Build
Reliable Software?

 Common approaches:
 Tracing, source level debugging
 Simulation/emulation
 Network error status reporting
 Log and replay

 Hard to catch all bugs.

Candidate Approach:
Formal Methods

 Express safety properties (e.g., task A will never
miss its deadline)

 Prove that safety properties hold
 If proof fails, counter example is presented (a

sequence of events that leads to failure)
 Problem:

 Proofs require axioms. Axioms may make incorrect
assumptions (e.g., circular sensing range)

 Interactions must be explicitly modeled. Failure to
model interactions (e.g., between wind and magnetic
sensor) may overlook some failure modes.

Living with Buggy Systems
 If errors cannot be avoided (even using

formal methods), we must design systems to
tolerate them
 Architectures for “living with bugs”
 Fast diagnosis and recovery
 Issues

 Problem must be observable (or else cannot diagnose)
 Observation must be in time so that recovery is

possible (observing that you forgot your parachute
after you jump will not help you)

 Systems with highly auto-correlated state on long time-
scales will likely take long to recover

Simplicity to Conquer Complexity
Lui Sha

 Elements of a good design
 Simple safety core
 Complex enhanced mission functionality
 Formal proof of core correctness
 Well formed dependency (core may use but will

not depend on any other components)

Example: A Sorting Exercise
 Sorting:

 Bubble sort: easy to write but slower, O(n2)
 Quick sort: faster, O(n log(n)), but more complicated to

write
 Joe remembers how to do bubble sort but is not

perfectly sure of quick sort (has a 50% chance of
getting it right).

 Joe is asked to write a sorting routine:
 Correct and fast: A
 Correct but slow: B
 Incorrect: F

Example: A Sorting Exercise
 Sorting:

 Bubble sort: easy to write but slower, O(n2)
 Quick sort: faster, O(n log(n)), but more complicated to

write
 Joe remembers how to do bubble sort but is not

perfectly sure of quick sort (has a 50% chance of
getting it right).

 Joe is asked to write a sorting routine:
 Correct and fast: A
 Correct but slow: B
 Incorrect: F

Example: A Sorting Exercise
 Sorting:

 Bubble sort: easy to write but slower, O(n2)
 Quick sort: faster, O(n log(n)), but more complicated to

write
 Joe remembers how to do bubble sort but is not

perfectly sure of quick sort (has a 50% chance of
getting it right).

 Joe is asked to write a sorting routine:
 Correct and fast: A
 Correct but slow: B
 Incorrect: F

Critical requirement:
Must pass!

Solution
 Simplicity to “control” complexity

Solution

 Key property
 Use complex but efficient solution in the

common case
 If the complex solution fails, catch the failure

and switch to the simple (less efficient) but safe
option

Asimov Laws of Robotics
 What are the implications on software

system design for the robot?

