
What is Cyber-physical 
Computing: Basic Concepts 
and Application Examples

A tale of Interactive Complexity 
in Systems that Interact with the 
Physical World… and with People!



Early History of CPS: 
The Beginnings

 NSF Workshop on Cyber-Physical Systems, October 16-17, 2006, Austin, TX.
 National Meeting on Beyond SCADA: Networked Embedded Control for Cyber Physical 

Systems, November 8-9, 2006, Pittsburgh, PA.
 National Workshop on High-Confidence Software Platforms for Cyber-Physical Systems 

(HCSP-CPS), November 30 - December 1, 2006, Alexandria, VA.
 NSF Industry Round-Table on Cyber-Physical Systems, May 17, 2007, Arlington, VA.
 Joint Workshop On High-Confidence Medical Devices, Software, and Systems (HCMDSS) and 

Medical Device Plug-and-Play (MD PnP) Interoperability, June 25-27, 2007, Boston, MA.
 National Workshop on Composable Systems Technologies for High-Confidence Cyber-

Physical Systems, July 9-10, 2007, Arlington, VA.
 National Workshop on High-Confidence Automotive Cyber-Physical Systems, April 3-4, 2008, 

Troy, MI.
 CPSWeek, April 21-24, 2008, St. Louis, MO.
 CPS Summit, April 25, 2008, St. Louis, MO: NSF Announces new CPS Initiative
 The First International Workshop on Cyber-Physical Systems, International Conference on 

Distributed Computing Systems (ICDCS), June 20, 2008, Beijing, CHINA.
 Workshop on CPS Applications in Smart Power Systems, Raleigh, NC, 2011
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Original Focus: Mission-critical Systems

Building Timely, Predictable, Reliable Systems



Two Classical Challenges

 Establish Functional Correctness: How 
to build functionally correct systems from 
possibly flawed components?

 Establish Temporal Correctness: What 
are the analytic foundations for robust 
timing guarantees in highly dynamic, time-
critical software systems?



Rate of Innovation and 
Development Time Issues

 Early in the 20th century products had a 
20-30 year life-span before new “versions” 
were developed

 At present, a product is obsolete in 2-3 
years at most
 No time to discover and “debug” all possible 

problems
 New problems introduced in new versions
 Component reuse generates additional 

problems



Software: Increasingly the 
Primary Cause of System Failure

 Arbitrary component interactions 
unconstrained by physical laws of nature 
(algorithms can do anything)
 Potential for high interactive complexity

 Fast error propagation (at computing device 
speed)
 Potential for tight coupling

 Software that interacts with the physical 
world is buggy!



Typical Isolation Techniques
 Abstraction 
 Separation of concerns

Physical 

Link

Network

Transport

Abstraction

Kernel

Virtualization

Separate virtual machines or 
protection domains



Abstraction  Specialization
 Complexity 

 More levels of abstraction 
 Narrower specialization 
 More details are “abstracted away” 
 Myopic view. Less knowledge of

possible adverse interactions 
 More potential for interaction 

or incompatibility errors



The Curse of Component Re-use
The Ariane 5 Explosion

 On June 4, 1996, the 
maiden flight of the 
European Ariane 5 
launcher crashed about 40 
seconds after takeoff (0.5 
Billion Dollars)

 Cause of problem?
 An inertial reference software component.

 Not needed during flight. Should be stopped before takeoff but is 
allowed to operate for up to 50 additional seconds

 Component was designed for Ariane 4. Ariane 5 was a faster system. 
Velocity variable overflowed.

 Overflow causes an exception and crashes the software 



Interactive Complexity Bugs
Tesla Autopilot Crash



Example 1: Interactive Complexity 
in Distributed Protocols

 Interactive complexity means: 
 Simple individually insignificant failures interact 

to compound into system failures, or even… 
 Sets of correctly operating components interact 

to produce a system failure
 Example:

 Shortest hop routing
 Adaptive rate control



Example 1:
 Shortest hop routing

 Find shorter path (fewer hops that are longer)
 Long wireless hops  poor channel quality
 Adaptive rate control

 Reduce transmission rate to improve quality
 Reduced transmission rate 

 longer transmission range



Example 2:
Correlated failure modes between 
“independent components”

 Localization (determining a node’s location) fails in 
a correlated manner with failure to synchronize 
clocks. Why?
 Note: None of the two components uses the other

Localization Clock synchronization

Tracking



Example 2:
Correlated failure modes between 
“independent components”

 Localization (determining a node’s location) fails in 
a correlated manner with failure to synchronize 
clocks. Why?
 Note: None of the two components uses the other

 Answer: communication problems. Both 
subsystems rely on distributed protocols

Localization Clock synchronization

Tracking
Poor performance is
Compounded by two
Correlated failures



Example 3: 
More on hidden interactions

 Magnetic tracking system operates perfectly in 
calm weather but fails under strong wind 
conditions. Why?
 Wind should not change magnetic sensor reading



Example 3: 
More on hidden interactions

 Magnetic tracking system operates perfectly in 
calm weather but fails under strong wind 
conditions. Why?
 Wind should not change magnetic sensor reading

 Explanation
 Wind caused node antenna to vibrate
 Moving (metal) antenna caused a lot of noise on 

the magnetic sensor
 Noise filter adapted noise threshold to remove 

background noise (and in this case the signal too)



Example 4: Three Mile Island 
Nuclear Reactor Failure

False alarm of minor secondary 
system coolant leakage through seal

Stop secondary coolant flow and turbine

Heat exchange stops between 
primary and secondary cooling
Systems. Primary overheats.

Open emergency feed-water pumps 
from emergency tank to cool coolant 

Failure to open valves

Valve failure indicator light turns on 
but is occluded by repair tag on 
another device

Core overheating triggers emergency 
shutdown

Core temperature and pressure 
continue to build up Coolant pressure relief valve opens 

to reduce pressure
Pressure drops. Valve is stuck open. 
Coolant boils off. Core temperature 
rises. Reaction resumes.

Core is flooded with water

Water at very high 
temperature oxydizes 
metal fuel rod 
coating (rusting) 

Hydrogen is released eventually 
leading to explosion 



The Fukushima Reactor 
Failure?

 In April 2011, Japan was hit with an Earthquake followed 
by a Tsunami. This led to a series of events that 
ultimately caused a level-7 meltdown in the Fukushima 
Nuclear Reactor. Can you show the chain of events that 
led to the meltdown?



Ensuring Software Correctness
 The physical world has no “reset” button

 When failures occur, they can be costly!
 Must reduce:

 Interactive complexity
 Unexpected interactions between seemingly correct 

components
 Coupling

 Fast propagation of effects of failure to other system 
components 



Designing Complex Systems
(Example: Air-traffic control)

 Reduce interactive complexity
 Air traffic is restricted to non-intersecting 

“corridors” that separate flight paths in the sky
 Reduce coupling

 Separate aircraft by a substantial distance to 
reduce cascaded failure effects (think: multiple-
car pile-ups in freeway accidents)



Interaction Examples
 ??



Interaction Examples
 Function calls
 Resource sharing

 One module crashes  overwrites memory of another 
 second “unrelated” module crashes (analogy to 
physical proximity and correlated damage)

 One module is overloaded  another starves
 Timing and synchronization constraints

 Precedence constraints (one module must execute 
before another)

 Exclusion constraints (cannot operate at the same time)
 Assumptions 

 I thought you submitted our project report?
 No, I thought you did?



Question: How to Build 
Reliable Software?

 Common approaches:
 Tracing, source level debugging
 Simulation/emulation
 Network error status reporting
 Log and replay

 Hard to catch all bugs.



Candidate Approach:
Formal Methods

 Express safety properties (e.g., task A will never 
miss its deadline)

 Prove that safety properties hold
 If proof fails, counter example is presented (a 

sequence of events that leads to failure)
 Problem: 

 Proofs require axioms. Axioms may make incorrect 
assumptions (e.g., circular sensing range)

 Interactions must be explicitly modeled. Failure to 
model interactions (e.g., between wind and magnetic 
sensor) may overlook some failure modes.  



Living with Buggy Systems
 If errors cannot be avoided (even using 

formal methods), we must design systems to 
tolerate them
 Architectures for “living with bugs”
 Fast diagnosis and recovery
 Issues

 Problem must be observable (or else cannot diagnose)
 Observation must be in time so that recovery is 

possible (observing that you forgot your parachute 
after you jump will not help you)

 Systems with highly auto-correlated state on long time-
scales will likely take long to recover    



Simplicity to Conquer Complexity 
Lui Sha

 Elements of a good design
 Simple safety core
 Complex enhanced mission functionality
 Formal proof of core correctness
 Well formed dependency (core may use but will 

not depend on any other components)



Example: A Sorting Exercise
 Sorting:

 Bubble sort: easy to write but slower, O(n2)
 Quick sort: faster, O(n log(n)), but more complicated to 

write 
 Joe remembers how to do bubble sort but is not 

perfectly sure of quick sort (has a 50% chance of 
getting it right). 

 Joe is asked to write a sorting routine:
 Correct and fast: A
 Correct but slow: B
 Incorrect: F
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Example: A Sorting Exercise
 Sorting:

 Bubble sort: easy to write but slower, O(n2)
 Quick sort: faster, O(n log(n)), but more complicated to 

write 
 Joe remembers how to do bubble sort but is not 

perfectly sure of quick sort (has a 50% chance of 
getting it right). 

 Joe is asked to write a sorting routine:
 Correct and fast: A
 Correct but slow: B
 Incorrect: F

Critical requirement: 
Must pass!



Solution
 Simplicity to “control” complexity



Solution

 Key property
 Use complex but efficient solution in the 

common case
 If the complex solution fails, catch the failure 

and switch to the simple (less efficient) but safe 
option 



Asimov Laws of Robotics
 What are the implications on software 

system design for the robot?


