Real-time and Cyber Physical Systems

From Control Systems to the Internet of Things *http://courses.engr.illinois.edu/cs424/*

Tarek Abdelzaher Dept. of Computer Science University of Illinois at Urbana Champaign

Logistics

Instructor

Tarek Abdelzaher, 4126 Siebel Center, Tel: 265-6793 Office Hours: Fridays, 9-10am, 4126 Siebel Center

zaher@illinois.edu

A Little About Me

- Ph.D. in QoS Adaptation in Real-Time Systems, Department of Computer Science, University of Michigan, 1999.
- 1999-2005: Assistant Professor, Department of Computer Science, University of Virginia.
- 2005-now: Professor, Department of Computer Science, University of Illinois at Urbana Champaign
- Research Interests: Embedded Systems, Real-time Computing, Cyber-physical Systems, Social Sensing

Where and When

Lecture Times

Tuesdays and Thursdays, 2:00-3:15pm, 1109 Siebel Center

Grading

- Participation: 10%
 - Assigned for individuals' attendance, quizzes, and discussion
- Homework: 15%
 - Assigned for 4 homeworks
- Programming Assignments: 25%
 - Assigned for 4 team programming assignments
- Midterm #1: 15%
 - Assigned for an open-book in-class midterm
- Midterm #2: 15%
 - Assigned for a second open-book in-class midterm
- Final: 20%
 - Assigned for an open-book final.

4th Credit Project

- Graduate students are expected to take this course for 4 credits. The 4th credit unit can be received for either of the activities below:
 - Survey on a real-time, CPS, or IoT topic of choice
 - Novel capability involving CPS/IoT devices, robotic vision, machine intelligence (for CPS/IoT devices), or human-machine interfaces

Schedule

See Website:

http://courses.engr.illinois.edu/cs424/

Where is Computer Science Research Going?

The beginning:

Where is Computer Science Research Going?

Keyword Trends (On Scopus)

Keyword Trends (Continued): 2018/2013 Multiplicative Factor

Growth Factor

Keyword Trends (Continued): 2018/2013 Multiplicative Factor

Growth Factor

Force #2: Integration at Scale (Isolation has cost!)

Picture courtesy of Patrick Lardieri

(TSCE)

Low end: ubiquitous embedded devices

- Large-scale networked embedded systems
- Seamless integration with a physical environment
- High end: complex systems with global integration
 - Examples: Global Information Grid, Total Ship Computing Environment

Global Information Grid

World Wide Sensor Web (Feng Zhao)

ow End

Integration and Scaling Challenges

Total Ship Computing Environment

Future Combat System (Rob Gold)

Force #3: Biological Evolution

Force #3: Biological Evolution

It's too slow!

- The exponential proliferation of data sources (afforded by Moore's Law) is *not* matched by a corresponding increase in human ability to consume information!
- → Increasing focus on information distillation and automation (machine intelligence) to support decision making

Confluence of Trends The Overarching Challenge

Trend2: Integration at Scale (Isolation has cost)

Trend1: Device/Data Proliferation (by Moore's Law)

Trend3: Relative Autonomy (Humans are not getting faster)

Confluence of Trends The Overarching Challenge

Trend1: Device/Data Proliferation (by Moore's Law) Core Challenge: Intelligent, Real-time Systems of Connected Things (IoTs)

Trend3: Relative Autonomy (Humans are not getting faster)

Traditional Embedded Computing (Cyber+Physical)

Emerging Directions

CPS/IoT Applications – Medical

CPS/IoT Applications – Energy

Zero-energy Building: Science House at the Science Museum of Minnesota

Residential Energy

CPS/IoT Applications – Transportation

Transportation

CPS/IoT Applications – Sustainability

Upsala Glacier (Time Magazine, Special Issue on Global Warming, March 26, 2006)

Sustainability

What Do CPS/IoT Systems Have in Common?

The need for reliability/correctness: If system fails, bad consequences will occur (restarting a crashed computer is annoying, but restarting a crashed computer in a medical robot performing a surgery can be life-threatening)

- Software correctness
- Data correctness
- Timing correctness

The Safety/Performance Trade-off in CPS/IoT Systems

Performance: Exploring the edge of feasibility

Robustness: Guaranteeing delivery in the face of adverse conditions

The Safety/Performance Trade-off in CPS/IoT Systems

Performance: Exploring the edge of feasibility *(often in the presence of high complexity)*

Robustness: Guaranteeing delivery in the face of adverse conditions *(implying simplicity to ensure predictability)*

The Safety/Performance Trade-off in CPS/IoT Systems

 Safe solutions and high-performance solutions are in different regions of the design space

Important CPS/IoT Problem
"Safety + Performance" Architectures

 Architectures and design paradigms for combining safety and high performance

Lab

 Build software for a human-controlled robot that ensures safe operation!