

Tarek Abdelzaher

The 4th Credit Project (Suggested: 1-2 persons per project)

- Option 1: Develop a 30 min survey presentation on an advanced topic of your choice in real-time and embedded computing.
 - Topic name due 10/17.
 - Slides due 11/17.
 - Presentation the week of 12/2
- Example topics:
 - Self-driving cars: the state of the art and future challenges
 - Real-time AI
 - Multicore scheduling main challenges and results
 - Embedded system security
 - Scheduling Map/Reduce workflows (with emphasis on time support)
 - Participatory and social sensing (crowd-sensing)
 - Software model checking (proving software correctness)
 - IoT market

The 4th Credit Project (Suggested: 1-2 persons per project)

- Option 2: Implement a real-time or embedded systems service
 - Service name due 10/17.
 - Slides due 11/17.
 - Presentation + Demo the week of 12/2
- Example services:
 - A real-time scheduler for "Intelligence as a Service"
 - Security and diagnostics
 - Disaster response services
 - Social sensing services
 - Your idea here...

Consider a set of periodic tasks where each task, *i*, has a computation time, C_i , a period, P_i , and a relative deadline $D_i < P_i$.

Consider a set of periodic tasks where each task, *i*, has a computation time, C_i , a period, P_i , and a relative deadline $D_i < P_i$.

Consider a set of periodic tasks where each task, *i*, has a computation time, C_i , a period, P_i , and a relative deadline $D_i < P_i$.

Schedulability can't be worse than if P_i was reduced to D_i . Thus:

$$\sum_{i} \frac{C_i}{D_i} \le n \left(2^{1/n} - 1 \right)$$

Consider a set of periodic tasks where each task, *i*, has a computation time, C_i , a period, P_i , and a relative deadline $D_i < P_i$.

• Worst case interference from a higher priority task, j? C_j P_j D_i

Worst case interference from a higher priority Problem? task, j? P_{j} C_i $\overline{P_i}$ DWors case interference, I, From higher priority tasks P_i • Schedulability condition: (C_i) + P_{\cdot} My deadline My exec. time

Solve iteratively for the smallest R_i that satisfies both equations

 P_i R_i Consider a system of two tasks:

Task 1: P_1 =1.7, D_1 =0.5, C_1 =0.5 Task 2: P_2 =8, D_2 =3.2, C_2 =2

$$I = \sum_{j} \left| \frac{R_{i}}{P_{j}} \right| C_{j}$$
$$R_{i} = I + C_{i}$$

 $R_2^{(0)} = I^{(0)} + C_2 = 2.5$

Task 1: P_1 =1.7, D_1 =0.5, C_1 =0.5 Task 2: P₂=8, D₂=3.2, C₂=2

Task 1: P_1 =1.7, D_1 =0.5, C_1 =0.5 Task 2: P_2 =8, D_2 =3.2, C_2 =2

$$I = \sum_{j} \left[\frac{R_{i}}{P_{j}} \right] C_{j}$$
$$R_{i} = I + C_{i}$$

$$I^{(0)} = C_1 = 0.5$$

$$R_2^{(0)} = I^{(0)} + C_2 = 2.5$$

$$I^{(1)} = \left[\frac{R_2^{(0)}}{P_1}\right] C_1 = \left[\frac{2.5}{1.7}\right] 0.5 = 1$$

$$R_2^{(1)} = I^{(1)} + C_2 = 3$$

Task 1: P_1 =1.7, D_1 =0.5, C_1 =0.5 Task 2: P_2 =8, D_2 =3.2, C_2 =2

$$I = \sum_{j} \left[\frac{R_{i}}{P_{j}} \right] C_{j}$$
$$R_{i} = I + C_{i}$$

 $I^{(0)} = C_1 = 0.5$ $R_2^{(0)} = I^{(0)} + C_2 = 2.5$ $I^{(1)} = \left[\frac{R_2^{(0)}}{P_1}\right] C_1 = \left[\frac{2.5}{1.7}\right] 0.5 = 1$ $R_2^{(1)} = I^{(1)} + C_2 = 3$ $I^{(2)} = \left[\frac{R_2^{(1)}}{P_1}\right] C_1 = \left[\frac{3}{1.7}\right] 0.5 = 1$ $R_2^{(2)} = I^{(2)} + C_2 = 3$

Task 1: P_1 =1.7, D_1 =0.5, C_1 =0.5 Task 2: P_2 =8, D_2 =3.2, C_2 =2

$$I = \sum_{j} \left[\frac{R_{i}}{P_{j}} \right] C_{j}$$
$$R_{i} = I + C_{i}$$

 $I^{(0)} = C_1 = 0.5$ $R_2^{(0)} = I^{(0)} + C_2 = 2.5$ $I^{(1)} = \left[\frac{R_2^{(0)}}{P_1}\right] C_1 = \left[\frac{2.5}{1.7}\right] 0.5 = 1$ $R_2^{(1)} = I^{(1)} + C_2 = 3$ $I^{(2)} = \left[\frac{R_2^{(1)}}{P_1}\right] C_1 = \left[\frac{3}{1.7}\right] 0.5 = 1$ $R_2^{(2)} = I^{(2)} + C_2 = 3$ $3 < 3.2 \rightarrow Ok!$