
Well-formed Dependency and
Open-loop Safety

Based on Slides by Professor Lui
Sha

Reminders and
Announcements

 Announcements:

 CS 424 is now on Piazza:

piazza.com/illinois/fall2017/cs424/home

 We must form 4-person groups for robot-based
MPs (each group gets one robot)

 If you already formed a group, please send me and Yiran
Zhao (the TA) the names of your group partners (email
to: zhao97@illinois.edu, with CC: zaher@Illinois.edu).
Please use the subject: “CS424 GROUP” (in upper case).

 All people who do not have a group by the end of next
week will be assigned a group by us.

Recap

 Reliability for a giving mission duration t,
R(t), is the probability of the system working
as specified (i.e., probability of no failures)
for a duration that is at least as long as t.

 The most commonly used reliability function
is the exponential reliability function:

where l is the failure rate.

tetR λ−=)(

Triple Modular Redundancy

 Which case is TMR?

TMR has a lower reliability in the long
term. How come?

5

Implications of the Postulates

R(Effort, Complexity, t) = e-kC t/E

 Note: splitting the effort greatly reduces
reliability.

Analytic Redundancy and
Complexity Reduction

 Partial redundancy via simple backup that
meets only safety-critical requirements

Example: A Sorting Exercise

 Sorting:
 Bubble sort: easy to write but slower, O(n2)

 Quick sort: faster, O(n log(n)), but more complicated to
write

 Joe remembers how to do bubble sort, but is not
perfectly sure of quick sort (has a 50% chance of
getting it right).

 Joe is asked to write a sorting routine:

 Correct and fast: A

 Correct but slow: B

 Incorrect: F
Critical requirement:
Must pass!

Solution

 Simplicity to “control” complexity

Solution

 Key property

 Use complex but efficient solution in the
common case

 If the complex solution fails, catch the failure
and switch to the simple (less efficient) but safe
option

10

Simplex Architectural Pattern

Simple high
assurance
control subsystem

Complex high
performance
control subsystem

Data Flow Block Diagram

Plant

Switch
Logic

A simple verifiable core; diversity in the form of 2
alternatives; feedback control of the software execution.

Better performance, but less reliable

Example

 Component with mean time to failure = 10
years. Compare the reliability of:

a) Using this component alone

b) TMR using three versions of this component

Example

 Component with mean time to failure = 10
years. Compare the reliability of:

a) Using this component alone

b) TMR using three versions of this component

After 1 year

Example

 Component with mean time to failure = 10
years. Compare the reliability of:

a) Using this component alone

b) TMR using three versions of this component

After 1 year

Answer:

a) r(t) = e-l t = e – (1/10).1 = 0.9048

Example

 Component with mean time to failure = 10
years. Compare the reliability of:

a) Using this component alone

b) TMR using three versions of this component

After 1 year

Answer:

a) r(t) = e-l t = e – (1/10).1 = 0.9048

b) r(t)3 + 3r(t)2 (1 – r(t)) = 0.9745

Example

 Component with mean time to failure = 10
years. Compare the reliability of:

a) Using this component alone

b) TMR using three versions of this component

After 15 years

Example

 Component with mean time to failure = 10
years. Compare the reliability of:

a) Using this component alone

b) TMR using three versions of this component

After 15 years

Answer:

a) r(t) = e-l t = e – (1/10).15 = 0.2231

Example

 Component with mean time to failure = 10
years. Compare the reliability of:

a) Using this component alone

b) TMR using three versions of this component

After 15 years

Answer:

a) r(t) = e-l t = e – (1/10).15 = 0.2231

b) r(t)3 + 3r(t)2 (1 – r(t)) = 0.1271

Example

 Component with mean time to failure = 10 years.
Compare the reliability of:

a) Using this component alone

b) TMR using three versions of this component

c) Using this component with a reduced complexity
backup (C = 0.1)

After 15 years

Example

 Component with mean time to failure = 10 years.
Compare the reliability of:

a) Using this component alone

b) TMR using three versions of this component

c) Using this component with a reduced complexity
backup (C = 0.1)

After 15 years

Answer:

c) r1(t) = e-l t = 0.2231, rb(t) = e – 0.1l t = 0.8607

Example

 Component with mean time to failure = 10 years.
Compare the reliability of:

a) Using this component alone

b) TMR using three versions of this component

c) Using this component with a reduced complexity
backup (C = 0.1)

After 15 years

Answer:

c) r1(t) = e-l t = 0.2231, rb(t) = e – 0.1l t = 0.8607

1 – (1 – r1 (t))(1 – rb(t)) = 0.8918

Example

 Component with mean time to failure = 10 years
(at unit complexity and unit budget). Compare
the reliability of:

a) Using this component alone

b) TMR using three versions of this component assuming
same total budget

After 1 year

Example

 Component with mean time to failure = 10 years (at unit
complexity and unit budget). Compare the reliability of:
a) Using this component alone

b) TMR using three versions of this component assuming same total
budget

After 1 year

Answer:

a) r(t) = e-l t = e – (1/10).1 = 0.9048

Example

 Component with mean time to failure = 10 years (at unit
complexity and unit budget). Compare the reliability of:
a) Using this component alone

b) TMR using three versions of this component assuming same total
budget

After 1 year

Answer:

a) r(t) = e-l t = e – (1/10).1 = 0.9048

b) r2(t) = e-3 l t = 0.7408

r2(t)
3 + 3r2(t)

2 (1 – r2(t)) = 0.8333

Lessons Learned?

Lessons Learned

 More components/redundancy is not
always better

 When budget is finite, more components
means “spreading thinner” lower
reliability

 Having a simple (i.e., low complexity) back-
up significantly improves reliability!

Well Formed Dependencies

 Informal intuition: A reliable component
should not depend on a less reliable
component (it defeats the purpose).

Well Formed Dependencies

 Informal intuition: A reliable component
should not depend on a less reliable
component (it defeats the purpose).

 Design guideline: Use but do not depend
on less reliable components

Well Formed Dependencies

 Component A is said to depend on B, if the
correctness of A’s service depends on B’s
correctness.

 Component A is said to use the service of B, but
not depend on it for its critical service S, if S can
function correctly in spite of all B’s faults.

 A system’s dependency relations are said to be
well-formed if and only if critical components may
use but do not depend on the less critical
components

Design Philosophy

 Build the system out of a reliable core and less
reliable components

 Ensure that the reliable core is minimal (must be
simple to reduce complexity – see lessons learned
from reliability examples)

 The reliable core can use but do not depend on
other components (i.e., failures elsewhere should
not affect reliable core)

 The reliable core should ensure safety or recover
from failures of other components

Sorting Revisited

 How does the reliable component depend on
the less reliable component? How to fix it?

Sorting Revisited

 How does the reliable component depend on
the less reliable component? How to fix it?

Reliable
component

Less Reliable
component

Sorting Revisited
Ensuring Well-formed Dependencies

 Resource sharing faults

 Memory accessing fault: address space isolation

 Hogging the CPU: CPU cycle limit

 Timing fault: time out.

 Semantic fault

 Wrong order: Bubble sort

 Corrupt the input data item list: Export only a
permutation function on a protected input list

Safe State

 In cyber-physical systems it important to keep the
system from harm. The reliable core must ensure
that the system remains in a safe state (keep the
kid away from the freeway!!) even when other
components fail

 Example:

 If your tire blows up, safely park the car on the
shoulder of the road (safe state)

Discussion: Patient Controlled
Analgesia

 When pain is severe in a post-surgery
patient, the patient can push a button to
get more pain medication (morphine: drug
overdose will cause death). This is an
example of a lethal device in the hands of
an error-prone operator (the patient). How
can we ensure safety of software controlled
PCA?

