Well-formed Dependency and Open-loop Safety

Based on Slides by Professor Lui Sha

Reminders and Announcements

Announcements:

CS 424 is now on Piazza:

piazza.com/illinois/fall2017/cs424/home

- We must form 4-person groups for robot-based MPs (each group gets one robot)
 - If you already formed a group, please send me and Yiran Zhao (the TA) the names of your group partners (email to: <u>zhao97@illinois.edu</u>, with CC: <u>zaher@Illinois.edu</u>).
 Please use the subject: "CS424 GROUP" (in upper case).
 - All people who do not have a group by the end of next week will be assigned a group by us.

Recap

- Reliability for a giving mission duration t, R(t), is the probability of the system working as specified (i.e., probability of no failures) for a duration that is at least as long as t.
- The most commonly used reliability function is the exponential reliability function:

$$R(t) = e^{-\lambda t}$$

where λ is the failure rate.

Triple Modular Redundancy

Which case is TMR?

Implications of the Postulates

 $R(Effort, Complexity, t) = e^{-kC t/E}$

 Note: splitting the effort greatly reduces reliability. Analytic Redundancy and Complexity Reduction

 Partial redundancy via simple backup that meets only safety-critical requirements

Example: A Sorting Exercise

- Sorting:
 - Bubble sort: easy to write but slower, $O(n^2)$
 - Quick sort: faster, $O(n \log(n))$, but more complicated to write
- Joe remembers how to do bubble sort, but is not perfectly sure of quick sort (has a 50% chance of getting it right).
- What is Joe's optimal strategy? Joe is asked to write a sorting routine:
 - Correct and fast: A
 - Correct but slow: B
 - Incorrect: F

Solution

Simplicity to "control" complexity

Joe will get at least a "B".

Solution

Key property

- Use complex but efficient solution in the common case
- If the complex solution fails, catch the failure and switch to the simple (less efficient) but safe option
 Joe will get at least a "B".

Simplex Architectural Pattern

A simple verifiable core; diversity in the form of 2 alternatives; feedback control of the software execution.

Better performance, but less reliable

- Component with mean time to failure = 10 years. Compare the reliability of:
 - a) Using this component alone
 - b) TMR using three versions of this component

Component with mean time to failure = 10 years. Compare the reliability of:

 a) Using this component alone
 b) TMR using three versions of this component

 After 1 year

Component with mean time to failure = 10 years. Compare the reliability of:

- a) Using this component alone
- b) TMR using three versions of this component

After 1 year

Answer:

a) r(t) =
$$e^{-\lambda t} = e^{-(1/10).1} = 0.9048$$

Component with mean time to failure = 10 years. Compare the reliability of:

- a) Using this component alone
- b) TMR using three versions of this component After 1 year

Answer:

a) $r(t) = e^{-\lambda t} = e^{-(1/10).1} = 0.9048$ b) $r(t)^3 + 3r(t)^2 (1 - r(t)) = 0.9745$

Component with mean time to failure = 10 years. Compare the reliability of:

 a) Using this component alone
 b) TMR using three versions of this component

 After 15 years

Component with mean time to failure = 10 years. Compare the reliability of:

- a) Using this component alone
- b) TMR using three versions of this component

After 15 years

Answer:

a) r(t) =
$$e^{-\lambda t} = e^{-(1/10).15} = 0.2231$$

Component with mean time to failure = 10 years. Compare the reliability of:

- a) Using this component alone
- b) TMR using three versions of this component

After 15 years

Answer:

a)
$$r(t) = e^{-\lambda t} = e^{-(1/10).15} = 0.2231$$

b) $r(t)^3 + 3r(t)^2 (1 - r(t)) = 0.1271$

- Component with mean time to failure = 10 years.
 Compare the reliability of:
 - a) Using this component alone
 - b) TMR using three versions of this component
 - c) Using this component with a reduced complexity backup (C = 0.1)
 - After 15 years

- Component with mean time to failure = 10 years.
 Compare the reliability of:
 - a) Using this component alone
 - b) TMR using three versions of this component
 - c) Using this component with a reduced complexity backup (C = 0.1)
 - After 15 years

Answer:

c) $r_1(t) = e^{-\lambda t} = 0.2231$, $r_b(t) = e^{-0.1\lambda t} = 0.8607$

- Component with mean time to failure = 10 years.
 Compare the reliability of:
 - a) Using this component alone
 - b) TMR using three versions of this component
 - c) Using this component with a reduced complexity backup (C = 0.1)
 - After 15 years

Answer:

c)
$$r_1(t) = e^{-\lambda t} = 0.2231$$
, $r_b(t) = e^{-0.1\lambda t} = 0.8607$
 $1 - (1 - r_1(t))(1 - r_b(t)) = 0.8918$

- Component with mean time to failure = 10 years (at unit complexity and unit budget). Compare the reliability of:
 - a) Using this component alone
 - b) TMR using three versions of this component assuming same total budget
 - After 1 year

- Component with mean time to failure = 10 years (at unit complexity and unit budget). Compare the reliability of:
 - a) Using this component alone
 - b) TMR using three versions of this component assuming same total budget

After 1 year

Answer:

a) $r(t) = e^{-\lambda t} = e^{-(1/10).1} = 0.9048$

- Component with mean time to failure = 10 years (at unit complexity and unit budget). Compare the reliability of:
 - a) Using this component alone
 - b) TMR using three versions of this component assuming same total budget

After 1 year

Answer:

a)
$$r(t) = e^{-\lambda t} = e^{-(1/10).1} = 0.9048$$

b) $r_2(t) = e^{-3 \lambda t} = 0.7408$
 $r_2(t)^3 + 3r_2(t)^2 (1 - r_2(t)) = 0.83333$

Lessons Learned?

Lessons Learned

- More components/redundancy is not always better
- When budget is finite, more components means "spreading thinner" → lower reliability
- Having a simple (i.e., low complexity) backup significantly improves reliability!

Well Formed Dependencies

 Informal intuition: A reliable component should not depend on a less reliable component (it defeats the purpose).

Well Formed Dependencies

- Informal intuition: A reliable component should not depend on a less reliable component (it defeats the purpose).
- Design guideline: Use but do not depend on less reliable components

Well Formed Dependencies

- Component A is said to depend on B, if the correctness of A's service depends on B's correctness.
- Component A is said to use the service of B, but not depend on it for its critical service S, if S can function correctly in spite of all B's faults.
- A system's dependency relations are said to be well-formed if and only if critical components may use but do not depend on the less critical components

Design Philosophy

- Build the system out of a reliable core and less reliable components
- Ensure that the reliable core is *minimal* (must be simple to reduce complexity – see lessons learned from reliability examples)
- The reliable core can use but do not depend on other components (i.e., failures elsewhere should not affect reliable core)
- The reliable core should ensure safety or recover from failures of other components

Sorting Revisited

How does the reliable component depend on the less reliable component? How to fix it?

Joe will get at least a "B".

Sorting Revisited

How does the reliable component depend on the less reliable component? How to fix it?

Sorting Revisited Ensuring Well-formed Dependencies

Resource sharing faults

- Memory accessing fault: address space isolation
- Hogging the CPU: CPU cycle limit
- Timing fault: time out.
- Semantic fault
 - Wrong order: Bubble sort
 - Corrupt the input data item list: Export only a permutation function on a protected input list

Safe State

- In cyber-physical systems it important to keep the system from harm. The reliable core must ensure that the system remains in a safe state (keep the kid away from the freeway!!) even when other components fail
- Example:
 - If your tire blows up, safely park the car on the shoulder of the road (safe state)

Discussion: Patient Controlled Analgesia

When pain is severe in a post-surgery patient, the patient can push a button to get more pain medication (morphine: drug overdose will cause death). This is an example of a lethal device in the hands of an error-prone operator (the patient). How can we ensure safety of software controlled PCA?