
Simplicity to Control
Complexity

Based on Slides by Professor Lui
Sha

Reliability

 Reliability for a giving mission duration t,
R(t), is the probability of the system working
as specified (i.e., probability of no failures)
for a duration that is at least as long as t.

 The most commonly used reliability function
is the exponential reliability function:

where l is the failure rate.

tetR λ−=)(

Reliability

 Reliability for a giving mission duration t,
R(t), is the probability of the system working
as specified (i.e., probability of no failures)
for a duration that is at least as long as t.

 The most commonly used reliability function
is the exponential reliability function:

where l is the failure rate.

tetR λ−=)(
From queueing theory:
Probability of zero
independent arrivals in t
time units (Poisson
arrival process)

Reliability

 The most commonly used reliability function
is the exponential reliability function:

where l is the failure rate.

 Mean time to failure (MTTF) ?

tetR λ−=)(

Reliability

 The most commonly used reliability function
is the exponential reliability function:

where l is the failure rate.

 Mean time to failure (MTTF): 1/ l

tetR λ−=)(

Simple Reliability Modeling

 What is the reliability of a system that is
made of the above two components?

 Failure rate of first component: l1

 Failure rate of second component: l2

r1(t) r2(t)

Note: This system needs both components to function.

Simple Reliability Modeling

 Total failure rate = l1+ l2

 Mean time to failure = 1/(l1+ l2)

 Total reliability:

r1(t) r2(t)

tetrtrtR)(
21

21)()()(λλ +−==

Simple Reliability Modeling

 Total reliability?

r2(t)

r1(t)
Note: This system needs
at least one of the two
components to function.

Simple Reliability Modeling

 Total reliability:

r2(t)

r1(t)

))(1))((1(1)(21 trtrtR −−−=

Note: This system needs
at least one of the two
components to function.

Triple Modular Redundancy

r(t)

r(t)

r(t)

Note: This system needs
at least two of the three
components to function.

 Total reliability?

Triple Modular Redundancy

r(t)

r(t)

r(t)

Note: This system needs
at least two of the three
components to function.

 Total reliability:

))(1)((3)()(23 trtrtrtR −+=

Triple Modular Redundancy

 Which case is TMR?

Triple Modular Redundancy

 Which case is TMR?

TMR has a lower reliability in the long
term. How come?

14

Which Side Would You Take?

 Improving the reliability of increasingly complex
software is a serious challenge. There are two
philosophical positions:

 The diversity camp: Diversity in crops resists diseases…
diversity in software improves reliability. The likelihood of
making the same mistakes decreases as the degree of
diversity increases. Don’t put all your eggs in one basket.

 The bullet-proof your basket camp: Concentrate all the
available resource to one version and do it right. Do-it-right-
the-first-time is the time honored approach to quality
products.

15

Software Development
Postulates

 In science we rely on facts and logic. Let’s begin with
well known observations in software development.
We make three postulates:

 P1: Complexity Breeds Bugs. Everything else being equal,
the more complex the software project is, the harder it is to
make it reliable.

 P2: All Bugs are Not Equal. You fix a bunch of obvious bugs
quickly, but finding and fixing the last few bugs is much
harder, if you can ever hunt them down.

 P3: All Budgets are Finite. There is only a finite amount of
effort (budget) that we can spend on any project.

16

Implications of the Postulates

 A reliability function in the form:

R(Effort, Complexity, t) = e-kC t/E

satisfies P1 and P2

 The Finite Budget Assumption implies
that diversity is not free. If we go for n
version diversity, we must divide the
available effort n-ways. This allows us
to compare different approaches fairly.

17

Implications of the Postulates

R(Effort, Complexity, t) = e-kC t/E

 Note: splitting the effort greatly reduces
reliability.

18

Analysis

Analysis shows that redundancy/diversity does not win. What are we
going to do??

???

R(Effort, Complexity, t) = e-kC t/E

Another Look at Redundancy:
Complexity Reduction

 Safety-critical versus performance
requirements

 Example: power steering

Another Look at Redundancy:
Complexity Reduction

 Power steering:

 Safety requirements: cannot lose control over
steering even when power is lost (must have
mechanical backup)

 Performance requirements: ease of steering

Analytic Redundancy and
Complexity Reduction

 Partial redundancy via simple backup that
meets only safety-critical requirements

Example: A Sorting Exercise

 Sorting:
 Bubble sort: easy to write but slower, O(n2)

 Quick sort: faster, O(n log(n)), but more complicated to
write

 Joe remembers how to do bubble sort, but is not
perfectly sure of quick sort (has a 50% chance of
getting it right).

 Joe is asked to write a sorting routine:

 Correct and fast: A

 Correct but slow: B

 Incorrect: F

Example: A Sorting Exercise

 Sorting:
 Bubble sort: easy to write but slower, O(n2)

 Quick sort: faster, O(n log(n)), but more complicated to
write

 Joe remembers how to do bubble sort, but is not
perfectly sure of quick sort (has a 50% chance of
getting it right).

 Joe is asked to write a sorting routine:

 Correct and fast: A

 Correct but slow: B

 Incorrect: F

Example: A Sorting Exercise

 Sorting:
 Bubble sort: easy to write but slower, O(n2)

 Quick sort: faster, O(n log(n)), but more complicated to
write

 Joe remembers how to do bubble sort, but is not
perfectly sure of quick sort (has a 50% chance of
getting it right).

 Joe is asked to write a sorting routine:

 Correct and fast: A

 Correct but slow: B

 Incorrect: F
Critical requirement:
Must pass!

Solution

 Simplicity to “control” complexity

Solution

 Key property

 Use complex but efficient solution in the
common case

 If the complex solution fails, catch the failure
and switch to the simple (less efficient) but safe
option

