Real-time Scheduling

Introduction to Real-Time
A Robotic Design Example (Revisited)

A robot has a camera that detects obstacles with probability 70%, a bump sensor that detects imminent collisions with a probability of 99.9% (when an obstacle is 1 inch away), and a cliff sensor that detects imminent falls off a cliff with a probability of 99.9% (when the cliff is 1 inch away). The robot has breaks that can stop it within 0.1 second. The mission is to deliver supplies from point A to point B, safely.

- What are safety-critical requirements?
- What are mission-critical (i.e., performance) requirements?
- What is a safe state?
- How to ensure well-formed dependencies?
- What is a safe speed for the robot?
- Is the algorithm that computes speed based on preferred arrival time and route safety-critical or mission-critical?
The Schedulability Question: Drive-by-Wire Example

- Consider a control system in an autonomous robot
 - Navigation guidance is computed every 10 ms – wheel positions adjusted accordingly (computing the adjustment takes 4.5 ms of CPU time)
 - Threats and obstacles are reassessed every 4 ms – breaks adjusted accordingly (computing the adjustment takes 2 ms of CPU time)
 - Optimal speed is computed every 15 ms – robot speed is adjusted accordingly (computing the adjustment takes 0.45 ms)
 - For safe operation, adjustments must always be computed before the next sample is taken
- Is it possible to always compute all adjustments in time?
Some Terminology

- Tasks, periods, arrival-time, deadline, execution time, etc.

Diagram:
- Take a sample
- Compute adjustment
- Task i
- Must be done before next sample
- Take the next sample

Time

Period, P_i
Some Terminology

- Tasks, periods, arrival-time, deadline, execution time, etc.

Arrival time, a_i
(Release time, r_i)

Task i

Must be done Before next sample

Arrival of Next invocation

Time

Period, P_i
Some Terminology

- Tasks, periods, arrival-time, deadline, execution time, etc.

Arrival time, a_i
(Release time, r_i)

Deadline, d_i

Relative Deadline, D_i

Period, P_i

Arrival of Next invocation

Time
Some Terminology

- Tasks, periods, arrival-time, deadline, execution time, etc.

Diagram:
- Arrival time, a_i (Release time, r_i)
- Execution time, e_i (Computation time, c_i)
- Deadline, d_i
- Period, P_i
- Relative Deadline, D_i
- Arrival of Next invocation
Some Terminology

- Tasks, periods, arrival-time, deadline, execution time, etc.

Arrival time, a_i (Release time, r_i)

Execution time, e_i (Computation time, c_i)

Start time, s_i

Finish time, f_i

Deadline, d_i

Relative Deadline, D_i

Period, P_i

Arrival of Next invocation
Find a schedule that makes sure all task invocations meet their deadlines

- Steering task (4.5 ms every 10 ms)
- Breaks task (2 ms every 4 ms)
- Velocity control task (0.45 ms every 15 ms)
Sanity check #1: Is the processor over-utilized? (e.g., if you have 5 homeworks due this time tomorrow, each takes 6 hours, then $5 \times 6 = 30 > 24 \rightarrow$ you are overutilized)

- Steering task (4.5 ms every 10 ms)
- Breaks task (2 ms every 4 ms)
- Velocity control task (0.45 ms every 15 ms)
Sanity check #1: Is the processor over-utilized? (e.g., if you have 5 homeworks due this time tomorrow, each takes 6 hours, then $5 \times 6 = 30 > 24 \rightarrow$ you are overutilized)

- Hint: Check if processor utilization > 100%
Task Scheduling

- Decision #1: In what order should tasks be executed?
 - Hand-crafted schedule (fill timeline by hand)
 - Priority based schedule (assign priorities → schedule is implied)

Steering task (4.5 ms every 10 ms)

Breaks task (2 ms every 4 ms)

Velocity control task (0.45 ms every 15 ms)

How to assign priorities to tasks?
Task Scheduling

- Decision #1: In what order should tasks be executed?
 - Hand-crafted schedule (fill timeline by hand)
 - Priority based schedule (assign priorities → schedule is implied)

Intuition: Urgent tasks should be higher in priority
Task Scheduling

- Decision #2: Preemptive versus non-preemptive?
 - Preemptive: Higher-priority tasks can interrupt lower-priority ones
 - Non-preemptive: They can’t

Breaks task (2 ms every 4 ms)

Steering task (4.5 ms every 10 ms)

Velocity control task (0.45 ms every 15 ms)

In this example, will non-preemptive scheduling work?
Task Scheduling

- Decision #2: Preemptive versus non-preemptive
 - Preemptive: Higher-priority tasks can interrupt lower-priority ones
 - Non-preemptive: They can’t

Breaks task (2 ms every 4 ms)

Steering task (4.5 ms every 10 ms)

Velocity control task (0.45 ms every 15 ms)

In this example, will non-preemptive scheduling work?
- Hint: Compare relative deadlines of tasks to execution times of others
Timeline

- Deadlines are missed!
- Average Utilization < 100%

- Breaks task (2 ms every 4 ms)
- Steering task (4.5 ms every 10 ms)
- Velocity control task (0.45 ms every 15 ms)
Timeline

- Deadlines are missed!
- Average Utilization < 100%

Breaks task (2 ms every 4 ms)

Steering task (4.5 ms every 10 ms)

Velocity control task (0.45 ms every 15 ms)
- Deadlines are missed!
- Average Utilization < 100%

Breaks task (2 ms every 4 ms)

Steering task (4.5 ms every 10 ms)

Velocity control task (0.45 ms every 15 ms)

Fix: Give this task invocation a lower priority
Timeline

- Deadlines are missed!
- Average Utilization < 100%

Breaks task (2 ms every 4 ms)
Steering task (4.5 ms every 10 ms)
Velocity control task (0.45 ms every 15 ms)

Fix: Give this task invocation a lower priority
Task Scheduling

- Decision #3: Static versus Dynamic priorities?
 - Static: Instances of the same task have the same priority
 - Dynamic: Instances of same task may have different priorities

Intuition: Dynamic priorities offer the designer more flexibility and hence are more capable to meet deadlines
Interesting Questions

- What is the optimal dynamic priority scheduling policy? (Optimal: meets all deadlines as long as any other policy in its class can)
 - Can it meet all deadlines as long as the processor is not over-utilized?

- What is the optimal static priority scheduling policy?
 - When can it meet all deadlines?
 - Can it meet all deadline as long as the processor is not over-utilized?
Interesting Questions

- What is the optimal dynamic priority scheduling policy? (Optimal: meets all deadlines as long as any other policy in its class can)
 - Can it meet all deadlines as long as the processor is not over-utilized?

- What is the optimal static priority scheduling policy?
 - When can it meet all deadlines?
 - Can it meet all deadline as long as the processor is not over-utilized?
Main Results in Real-time Scheduling of Periodic Tasks

- Periodic Task Scheduling
 - Rate Monotonic
 - Bound
 - Optimality
 - EDF
 - Bound
 - Optimality
Advanced: Earliest Deadline First (EDF) Optimality Result

- EDF is the optimal dynamic priority scheduling policy
 - It can meet all deadlines whenever the processor utilization is less than 100%
 - Intuition:
 - You have HW1 due tomorrow and HW2 due the day after, which one do you do first?
 - If you started with HW2 and met both deadlines you could have started with HW1 (in EDF order) and still met both deadlines
 - EDF can meet deadlines whenever anyone else can
Earliest Deadline First (EDF) Optimality Result

- EDF is the optimal dynamic priority scheduling policy
 - It can meet all deadlines whenever the processor utilization is less than 100%
 - Intuition:
 - You have HW1 due tomorrow and HW2 due the day after, which one do you do first?
 - If you started with HW2 and met both deadlines you could have started with HW1 (in EDF order) and still met both deadlines
 - EDF can meet deadlines whenever anyone else can

```
Deadline
HW1

Non-EDF Ok → EDF OK!

HW1
HW2

Deadline
HW2
```
When can EDF Meet Deadlines?

- Consider a task set where:

\[\sum_i \frac{C_i}{P_i} = 1 \]

- Imagine a policy that reserves for each task \(i \) a fraction \(f_i \) of each clock tick, where \(f_i = \frac{C_i}{P_i} \)
Utilization Bound of EDF

- Imagine a policy that reserves for each task i a fraction f_i of each time unit, where $f_i = C_i / P_i$

- This policy meets all deadlines, because within each period P_i it reserves for task i a total time
 - $\text{Time} = f_i P_i = (C_i / P_i) P_i = C_i$ (i.e., enough to finish)
Utilization Bound of EDF

- Pick any two execution chunks that are not in EDF order and swap them
Utilization Bound of EDF

- Pick any two execution chunks that are not in EDF order and swap them.

 ![Diagram showing two execution chunks before and after swapping]

- Still meets deadlines!
Utilization Bound of EDF

- Pick any two execution chunks that are not in EDF order and swap them.

- Still meets deadlines!

- Repeat swap until all in EDF order
 \(\rightarrow\) EDF meets deadlines
Rate Monotonic Scheduling

Rate monotonic scheduling is the optimal fixed-priority scheduling policy for periodic tasks (with period = deadline).
The Worst-Case Scenario

- Consider the worst case where all tasks arrive at the same time.

- If any fixed priority scheduling policy can meet deadline, rate monotonic can!
Optimality of Rate Monotonic

- If any other policy can meet deadlines so can RM

Policy X meets deadlines?
Optimality of Rate Monotonic

- If any other policy can meet deadlines so can RM

Policy X meets deadlines? YES
→ RM meets deadlines
Utilization Bounds

- Intuitively:
 - The lower the processor utilization, U, the easier it is to meet deadlines.
 - The higher the processor utilization, U, the more difficult it is to meet deadlines.

- Question: is there a threshold U_{bound} such that
 - When $U < U_{\text{bound}}$ deadlines are met
 - When $U > U_{\text{bound}}$ deadlines are missed
Example
(Rate-Monotonic Scheduling)

Task 1
\(P_1 = 2 \)
\(C_1 = 1 \)

Task 2
\(P_2 = 3 \)
\(C_2 = 1.01 \)

\[
U = \frac{C_1}{P_1} + \frac{C_2}{P_2} = \frac{1}{2} + \frac{1.01}{3} \approx 83.3\%
\]

Question: is there a threshold \(U_{\text{bound}} \) such that
- When \(U < U_{\text{bound}} \) deadlines are met
- When \(U > U_{\text{bound}} \) deadlines are missed
Example
(Rate-Monotonic Scheduling)

Task 1
$P_1 = 2$
$C_1 = 1$

Task 2
$P_2 = 3$
$C_2 = 1.01$

$U = \frac{C_1}{P_1} + \frac{C_2}{P_2} = \frac{1}{2} + \frac{1.01}{3} \approx 83.3\%$

Question: is there a threshold U_{bound} such that
- When $U < U_{\text{bound}}$ deadlines are met
- When $U > U_{\text{bound}}$ deadlines are missed
Example (Rate-Monotonic Scheduling)

Task 1
- \(P_1 = 2 \)
- \(C_1 = 1 \)

Task 2
- \(P_2 = 3 \)
- \(C_2 = 1.01 \)

\[U = \frac{C_1}{P_1} + \frac{C_2}{P_2} + \frac{1.01}{3} \approx 83.3\% \]

Question: is there a threshold \(U_{\text{bound}} \) such that
- When \(U < U_{\text{bound}} \) deadlines are met
- When \(U > U_{\text{bound}} \) deadlines are missed
Another Example
(Rate-Monotonic Scheduling)

Task 1
\[P_1 = 2 \]
\[C_1 = 1 \]

Task 2
\[P_2 = 6 \]
\[C_2 = 2.4 \]

\[
U = \frac{C_1}{P_1} + \frac{C_2}{P_2} = \frac{1}{2} + \frac{2.4}{6} = 90\%
\]

Question: is there a threshold \(U_{\text{bound}} \) such that

- When \(U < U_{\text{bound}} \) deadlines are met
- When \(U > U_{\text{bound}} \) deadlines are missed
Another Example
(Rate-Monotonic Scheduling)

Task 1
\(P_1 = 2 \)
\(C_1 = 1 \)

Task 2
\(P_2 = 6 \)
\(C_2 = 2.4 \)

\[
U = \frac{C_1}{P_1} + \frac{C_2}{P_2} = \frac{1}{2} + \frac{2.4}{6} = 90\%
\]

Question: is there a threshold \(U_{\text{bound}} \) such that
- When \(U < U_{\text{bound}} \) deadlines are met
- When \(U > U_{\text{bound}} \) deadlines are missed
Another Example
(Rate-Monotonic Scheduling)

Task 1
- $P_1 = 2$
- $C_1 = 1$

Task 2
- $P_2 = 6$
- $C_2 = 2.4$

$U = \frac{C_1}{P_1} + \frac{C_2}{P_2} = \frac{1}{2} + \frac{2.4}{6} = 90\%$

Question: is there a threshold U_{bound} such that
- When $U < U_{bound}$ deadlines are met
- When $U > U_{bound}$ deadlines are missed

Schedulable!
Another Example
(Rate-Monotonic Scheduling)

Task 1
\(P_1 = 2 \)
\(C_1 = 1 \)

Task 2
\(P_2 = 6 \)
\(C_2 = 2.4 \)

\[
C_1 + \frac{1}{C_2} = 1 + \frac{2.4}{2.4} = 90\%
\]

Schedulability depends on task set!
No clean utilization threshold between schedulable and unschedulable task sets!

Question: is there a threshold \(U_{\text{bound}} \) such that
- When \(U < U_{\text{bound}} \) deadlines are met
- When \(U > U_{\text{bound}} \) deadlines are missed
A Conceptual View of Schedulability

Utilization = \sum_{i} \frac{C_i}{P_i}

Question: is there a threshold U_{bound} such that
- When $U < U_{\text{bound}}$ deadlines are met
- When $U > U_{\text{bound}}$ deadlines are missed
A Conceptual View of Schedulability

Utilization = \sum_i \frac{C_i}{P_i}

- Modified Question: is there a threshold U_{bound} such that
 - When $U < U_{\text{bound}}$ deadlines are met
 - When $U > U_{\text{bound}}$ deadlines may or may not be missed
A Conceptual View of Schedulability

Utilization = \sum_{i} \frac{C_i}{P_i}

\[U < U_{bound} \] is a sufficient but not necessary schedulability condition.

- Modified Question: is there a threshold \(U_{bound} \) such that:
 - When \(U < U_{bound} \) deadlines are met
 - When \(U > U_{bound} \) deadlines may or may not be missed

All green area (schedulable)

- Task Set
A Conceptual View of Schedulability

Utilization = \sum_{i} \frac{C_i}{P_i}

Equivalent question:
What’s the lowest utilization of an unschedulable task set?

All green area (schedulable)

- Modified Question: is there a threshold U_{bound} such that
 - When $U < U_{bound}$ deadlines are met
 - When $U > U_{bound}$ deadlines may or may not be missed
A Conceptual View of Schedulability

Equivalent question:
What’s the lowest utilization of an unschedulable task set?

Modified Question: is there a threshold U_{bound} such that
- When $U < U_{bound}$ deadlines are met
- When $U > U_{bound}$ deadlines may or may not be missed

Utilization $= \sum_i \frac{C_i}{P_i}$ (Called the Utilization Bound, U_{bound})
The Schedulability Condition

For n independent periodic tasks with periods equal to deadlines, the utilization bound is:

$$U = n\left(2^{\frac{1}{n}} - 1\right)$$

$$n \rightarrow \infty \quad U \rightarrow \ln 2$$
Done Today

Periodic Task Scheduling

Rate Monotonic

Bound
Optimality

EDF

Bound
Optimality