
Real-time Scheduling

Introduction to Real-Time

A Robotic Design Example
(Revisited)

 A robot has a camera that detects obstacles with probability 70%, a
bump sensor that detects imminent collisions with a probability of 99.9%
(when an obstacle is 1 inch away), and a cliff sensor that detects
imminent falls off a cliff with a probability of 99.9% (when the cliff is 1
inch away). The robot has breaks that can stop it within 0.1 second. The
mission is to deliver supplies from point A to point B, safely.

 What are safety-critical requirements?

 What are mission-critical (i.e., performance) requirements?

 What is a safe state?

 How to ensure well-formed dependencies?

 What is a safe speed for the robot?

 Is the algorithm that computes speed based on preferred arrival time and
route safety-critical or mission-critical?

The Schedulability Question:
Drive-by-Wire Example

 Consider a control system in an autonomous robot
 Navigation guidance is computed every 10 ms – wheel

positions adjusted accordingly (computing the adjustment
takes 4.5 ms of CPU time)

 Threats and obstacles are reassessed every 4 ms –
breaks adjusted accordingly (computing the adjustment
takes 2ms of CPU time)

 Optimal speed is computed every 15 ms – robot speed is
adjusted accordingly (computing the adjustment takes
0.45 ms)

 For safe operation, adjustments must always be
computed before the next sample is taken

 Is it possible to always compute all adjustments in
time?

Some Terminology

 Tasks, periods, arrival-time, deadline,
execution time, etc.

Time

Period, Pi

Task i

Take a sample
Take the next sample

Compute adjustment

Must be done
Before next sample

Some Terminology

 Tasks, periods, arrival-time, deadline,
execution time, etc.

Time

Arrival time, ai

(Release time, ri)

Period, Pi

Arrival of
Next invocation

Task i

Must be done
Before next sample

Some Terminology

 Tasks, periods, arrival-time, deadline,
execution time, etc.

Time

Arrival time, ai

(Release time, ri)
Deadline, di

Period, Pi

Relative Deadline, Di

Arrival of
Next invocation

Task i

Some Terminology

 Tasks, periods, arrival-time, deadline,
execution time, etc.

Time

Arrival time, ai

(Release time, ri)
Deadline, di

Period, Pi

Relative Deadline, Di

Arrival of
Next invocation

Task i

Execution time, ei

(Computation time, ci)

Some Terminology

 Tasks, periods, arrival-time, deadline,
execution time, etc.

Time

Arrival time, ai

(Release time, ri)
Deadline, di

Period, Pi

Relative Deadline, Di

Arrival of
Next invocation

Task i

Execution time, ei

(Computation time, ci)

Start time, si Finish time, fi

Back to

Drive-by-Wire Example

 Find a schedule that makes sure all task
invocations meet their deadlines

Steering task (4.5 ms every 10 ms)

Breaks task (2 ms every 4 ms)

Velocity control task (0.45 ms every 15 ms)

Back to

Drive-by-Wire Example

 Sanity check #1: Is the processor over-utilized? (e.g., if you have
5 homeworks due this time tomorrow, each takes 6 hours, then
5x6 = 30 > 24 you are overutilized)

Steering task (4.5 ms every 10 ms)

Breaks task (2 ms every 4 ms)

Velocity control task (0.45 ms every 15 ms)

Back to

Drive-by-Wire Example

 Sanity check #1: Is the processor over-utilized? (e.g., if you have
5 homeworks due this time tomorrow, each takes 6 hours, then
5x6 = 30 > 24 you are overutilized)
 Hint: Check if processor utilization > 100%

Steering task (4.5 ms every 10 ms)

Breaks task (2 ms every 4 ms)

Velocity control task (0.45 ms every 15 ms)

Task Scheduling

 Decision #1: In what order should tasks be executed?
 Hand-crafted schedule (fill timeline by hand)

 Priority based schedule (assign priorities schedule is implied)

Steering task (4.5 ms every 10 ms)

Breaks task (2 ms every 4 ms)

Velocity control task (0.45 ms every 15 ms)

How to assign priorities to tasks?

Task Scheduling

 Decision #1: In what order should tasks be executed?
 Hand-crafted schedule (fill timeline by hand)

 Priority based schedule (assign priorities schedule is implied)

Steering task (4.5 ms every 10 ms)

Breaks task (2 ms every 4 ms)

Velocity control task (0.45 ms every 15 ms)

Intuition: Urgent tasks should be higher in priority

Task Scheduling

Steering task (4.5 ms every 10 ms)

Breaks task (2 ms every 4 ms)

Velocity control task (0.45 ms every 15 ms)

 Decision #2: Preemptive versus non-preemptive?
 Preemptive: Higher-priority tasks can interrupt lower-priority ones

 Non-preemptive: They can’t

In this example, will non-preemptive scheduling work?

Task Scheduling

Steering task (4.5 ms every 10 ms)

Breaks task (2 ms every 4 ms)

Velocity control task (0.45 ms every 15 ms)

In this example, will non-preemptive scheduling work?
- Hint: Compare relative deadlines of tasks to execution times of others

 Decision #2: Preemptive versus non-preemptive
 Preemptive: Higher-priority tasks can interrupt lower-priority ones

 Non-preemptive: They can’t

Timeline

 Deadlines are missed!

 Average Utilization < 100%

Breaks task (2 ms every 4 ms)

Steering task (4.5 ms every 10 ms)

Velocity control task (0.45 ms every 15 ms)

Timeline

 Deadlines are missed!

 Average Utilization < 100%

Breaks task (2 ms every 4 ms)

Steering task (4.5 ms every 10 ms)

Velocity control task (0.45 ms every 15 ms)

Timeline

 Deadlines are missed!

 Average Utilization < 100%

Breaks task (2 ms every 4 ms)

Steering task (4.5 ms every 10 ms)

Velocity control task (0.45 ms every 15 ms)

Fix:
Give this task invocation
a lower priority

Timeline

 Deadlines are missed!

 Average Utilization < 100%

Breaks task (2 ms every 4 ms)

Steering task (4.5 ms every 10 ms)

Velocity control task (0.45 ms every 15 ms)

Fix:
Give this task invocation
a lower priority

Task Scheduling

 Decision #3: Static versus Dynamic priorities?
 Static: Instances of the same task have the same priority

 Dynamic: Instances of same task may have different priorities

Breaks task (2 ms every 4 ms)

Steering task (4.5 ms every 10 ms)

Velocity control task (0.45 ms every 15 ms)

Intuition: Dynamic priorities offer the designer more flexibility and
hence are more capable to meet deadlines

Interesting Questions

 What is the optimal dynamic priority scheduling
policy? (Optimal: meets all deadlines as long as
any other policy in its class can)

 Can it meet all deadlines as long as the processor is
not over-utilized?

 What is the optimal static priority scheduling
policy?

 When can it meet all deadlines?

 Can it meet all deadline as long as the processor is
not over-utilized?

Interesting Questions

 What is the optimal dynamic priority scheduling
policy? (Optimal: meets all deadlines as long as
any other policy in its class can)

 Can it meet all deadlines as long as the processor is
not over-utilized?

 What is the optimal static priority scheduling
policy?

 When can it meet all deadlines?

 Can it meet all deadline as long as the processor is
not over-utilized?

Utilization
Bounds

Main Results in Real-time
Scheduling of Periodic Tasks

Periodic Task Scheduling

Rate Monotonic EDF

Bound Optimality Bound Optimality

Advanced: Earliest Deadline
First (EDF) Optimality Result

 EDF is the optimal dynamic priority scheduling
policy
 It can meet all deadlines whenever the processor

utilization is less than 100%
 Intuition:

 You have HW1 due tomorrow and HW2 due the day after,
which one do you do first?

 If you started with HW2 and met both deadlines you could have
started with HW1 (in EDF order) and still met both deadlines

 EDF can meet deadlines whenever anyone else can

HW2 HW1

Deadline
HW1

Deadline
HW2Ok?

Earliest Deadline First (EDF)
Optimality Result

 EDF is the optimal dynamic priority scheduling
policy
 It can meet all deadlines whenever the processor

utilization is less than 100%
 Intuition:

 You have HW1 due tomorrow and HW2 due the day after,
which one do you do first?

 If you started with HW2 and met both deadlines you could have
started with HW1 (in EDF order) and still met both deadlines

 EDF can meet deadlines whenever anyone else can

HW2HW1

Deadline
HW1

Deadline
HW2Non-EDF Ok EDF OK!

When can EDF Meet
Deadlines?

 Consider a task set where:

 Imagine a policy that reserves for each task
i a fraction fi of each clock tick, where fi = Ci

/Pi

1=∑
i i

i

P

C

Clock tick

Utilization Bound of EDF

 Imagine a policy that reserves for each task i a
fraction fi of each time unit, where fi = Ci /Pi

 This policy meets all deadlines, because within
each period Pi it reserves for task i a total time

 Time = fi Pi = (Ci / Pi) Pi = Ci (i.e., enough to finish)

Clock tick

Utilization Bound of EDF

 Pick any two execution chunks that are not in
EDF order and swap them

Utilization Bound of EDF

 Pick any two execution chunks that are not in
EDF order and swap them

 Still meets deadlines!

Utilization Bound of EDF

 Pick any two execution chunks that are not in
EDF order and swap them

 Still meets deadlines!

 Repeat swap until all in EDF order
 EDF meets deadlines

Rate Monotonic Scheduling

 Rate monotonic scheduling is the optimal
fixed-priority scheduling policy for periodic
tasks (with period = deadline).

The Worst-Case Scenario

 Consider the worst case where all tasks
arrive at the same time.

 If any fixed priority scheduling policy can
meet deadline, rate monotonic can!

Optimality of Rate Monotonic

 If any other policy can meet deadlines so
can RM

Policy X meets deadlines?

Optimality of Rate Monotonic

 If any other policy can meet deadlines so
can RM

Policy X meets deadlines?
 RM meets deadlines

Utilization Bounds

 Intuitively:
 The lower the processor utilization, U, the easier it is to

meet deadlines.

 The higher the processor utilization, U, the more
difficult it is to meet deadlines.

 Question: is there a threshold Ubound such that

 When U < Ubound deadlines are met

 When U > Ubound deadlines are missed

Example
(Rate-Monotonic Scheduling)

Task 1
P1=2
C1=1

Task 2
P2=3
C2=1.01

%3.83
3

01.1

2

1

2

2

1

1 ≈+=+=
P

C

P

C
U

0 1 2 3 4 5 6 time

?

100%

0

U

 Question: is there a threshold Ubound such that
 When U < Ubound deadlines are met

 When U > Ubound deadlines are missed

Example
(Rate-Monotonic Scheduling)

Task 1
P1=2
C1=1

Task 2
P2=3
C2=1.01

%3.83
3

01.1

2

1

2

2

1

1 ≈+=+=
P

C

P

C
U

0 1 2 3 4 5 6 time

?

100%

0

U

 Question: is there a threshold Ubound such that
 When U < Ubound deadlines are met

 When U > Ubound deadlines are missed

Example
(Rate-Monotonic Scheduling)

Task 1
P1=2
C1=1

Task 2
P2=3
C2=1.01

%3.83
3

01.1

2

1

2

2

1

1 ≈+=+=
P

C

P

C
U

0 1 2 3 4 5 6 time

Missed deadline!

?

100%

0

U

83.3%

 Question: is there a threshold Ubound such that
 When U < Ubound deadlines are met

 When U > Ubound deadlines are missed

Another Example
(Rate-Monotonic Scheduling)

Task 1
P1=2
C1=1

Task 2
P2=6
C2=2.4

%90
6

4.2

2

1

2

2

1

1 =+=+=
P

C

P

C
U

0 1 2 3 4 5 6 time

?

100%

0

U

83.3%

 Question: is there a threshold Ubound such that
 When U < Ubound deadlines are met

 When U > Ubound deadlines are missed

Another Example
(Rate-Monotonic Scheduling)

Task 1
P1=2
C1=1

Task 2
P2=6
C2=2.4

%90
6

4.2

2

1

2

2

1

1 =+=+=
P

C

P

C
U

0 1 2 3 4 5 6 time

?

100%

0

U

83.3%

 Question: is there a threshold Ubound such that
 When U < Ubound deadlines are met

 When U > Ubound deadlines are missed

Another Example
(Rate-Monotonic Scheduling)

Task 1
P1=2
C1=1

Task 2
P2=6
C2=2.4

%90
6

4.2

2

1

2

2

1

1 =+=+=
P

C

P

C
U

0 1 2 3 4 5 6 time

Schedulable!

?

100%

0

U

83.3%
90%

 Question: is there a threshold Ubound such that
 When U < Ubound deadlines are met

 When U > Ubound deadlines are missed

Another Example
(Rate-Monotonic Scheduling)

Task 1
P1=2
C1=1

Task 2
P2=6
C2=2.4

%90
6

4.2

2

1

2

2

1

1 =+=+=
P

C

P

C
U

0 1 2 3 4 5 6 time

Schedulable!

?

100%

0

U

83.3%
90%

 Question: is there a threshold Ubound such that
 When U < Ubound deadlines are met

 When U > Ubound deadlines are missed

A Conceptual View of
Schedulability

Utilization

Task Set

Schedulable
Unschedulable

 Question: is there a threshold Ubound such that
 When U < Ubound deadlines are met

 When U > Ubound deadlines are missed

∑=
i i

i

P

C

A Conceptual View of
Schedulability

Utilization

Task Set

Schedulable
Unschedulable

 Modified Question: is there a threshold Ubound such that
 When U < Ubound deadlines are met

 When U > Ubound deadlines may or may not be missed

?

∑=
i i

i

P

C

A Conceptual View of
Schedulability

Utilization

Task Set

Schedulable
Unschedulable

 Modified Question: is there a threshold Ubound such that
 When U < Ubound deadlines are met

 When U > Ubound deadlines may or may not be missed

?

U < Ubound is a
sufficient but
not necessary
schedulability
condition

∑=
i i

i

P

C

A Conceptual View of
Schedulability

Utilization

Task Set

Schedulable
Unschedulable

 Modified Question: is there a threshold Ubound such that
 When U < Ubound deadlines are met

 When U > Ubound deadlines may or may not be missed

?

∑=
i i

i

P

C

A Conceptual View of
Schedulability

Utilization

Task Set

Schedulable
Unschedulable

 Modified Question: is there a threshold Ubound such that
 When U < Ubound deadlines are met

 When U > Ubound deadlines may or may not be missed

?

∑=
i i

i

P

C

The Schedulability Condition

 −= 12

1
nnU

2ln→∞→ Un

For n independent periodic tasks with periods equal to
deadlines, the utilization bound is:

Done Today

Periodic Task Scheduling

Rate Monotonic EDF

Bound Optimality Bound Optimality

