

Designing a Crowd-sensing Service: Greener Transportation

Tarek Abdelzaher

University of Illinois at Urbana Champaign

The Rise of Crowd-Sensing Force #1: More Sensors in Personal and Social Spaces

Source: BII estimates, Gartner, IDC, Strategy Analytics, company filings, World Bank 2013

A Modern Crowdsensing Application: Sustainable Transportation

Collision Location

Path 2

Path 1->

Vehicle 2

Transportation

EPA Statistics (USA)

- 200 million light vehicles on the streets in the US
- Each is driven 12000 miles annually on average
- Average MPG is 20.3 miles/gallon
- 118 Billion Gallons of Fuel per year!
- Savings of 1% = One Billion Gallons

GreenGPS: Fuel Efficient Vehicular Navigation

- Find the most fuel-efficient route (instead of a fastest or shortest)
- Fuel-efficient route is *different* from shortest or fastest route
 - Congestion → shortest may not be fuel efficient
 - MPG vs. speed is non-linear → fastest may not be fuel efficient

Fuel Consumption Model

- Simple model for fuel consumption derived from first principles
- The model is then is approximately recast in terms of easily measurable crowdsensed parameters (e.g., locations of stop signs, traffic lights, speed limits, and actual traffic conditions)

$$gpm = k_1 m \bar{v}^2 \frac{ST + \nu TL}{\Delta d} + k_2 m \frac{\bar{v}^2}{\Delta d} + k_3 m \cos(\theta) + k_4 A \bar{v}^2 + k_5 m \sin(\theta)$$

$$F_{engine} = \frac{\Gamma(\omega) Gg_k}{r}$$

Fuel Consumption Examples

 Experiments on five cars, each does four round-trips between 2 landmarks in Urbana-Champaign on fastest and shortest routes, showing that neither wins consistently in being energy-optimal

Car	Route	Better Route	Difference
Honda Accord	Home1 to Mall	Shortest	31.4%
2001	Home1 to Gym	Shortest	19.7%
Ford Taurus 2001	Home2 to Restaurant	Shortest	26%
Toyota Celica 2001	Home2 to Work	Fastest	10.1%
Nissan Sentra 2009	Home3 to Clinic	Fastest	8.4%
Honda Civic 2002	Home4 to Work	Fastest	18.7%

Finding Fuel-efficient Routes

 Example: Compare the GreenGPS route (green) to the fastest (blue), shortest (red), and Garmin EcoRoute (purple)

A Human Subjects Study

2000+ miles driven to evaluate GreenGPS

Car	Car	Car	Car	City	Hwy	Miles	Individual	General	Cluster-based
Make	Model	Year	Class	MPG	MPG	Driven	Error %	Error %	Error %
Toyota	Camry	2004	Mid-Size	24	33	80	1.55	8.44	1.72
Chevrolet	Impala	2002	Large	21	32	69	3.02	17.16	2.48
Ford	Ranger	2008	Van	15	19	29	0.89	25.26	5.26
Toyota	Corolla	2000	Compact	31	38	259	6.06	10.68	6.01
Buick	LeSabre	2002	Large	20	29	54	3.38	7.46	2.45
Ford	E-250	2011	Van	13	17	99	3.59	7.93	3.59
Toyota	Corolla	2010	Compact	26	35	53	4.31	18.47	9.32
Toyota	Celica	2001	Sub-Compact	28	34	497	4.94	11.69	4.94
Nissan	Altima	2006	Compact	24	31	95	3.83	7.04	3.83
Subaru	Impreza	2010	Sub-Compact	19	24	26	0.09	3.82	4.74
Toyota	Corolla	2004	Compact	32	40	141	3.67	13.59	3.67
Mazda	Mazda6	2003	Mid-Size	23	29	62	3.94	18.5	3.94
Audi	A4	2005	Compact	22	31	88	6.86	14.58	6.86
Toyota	Camry	2012	Mid-Size	25	35	90	4.96	7.59	4.96
Subaru	Impreza	2010	Sub-Compact	19	24	69	9.22	15.47	8.23
Hyundai	Santa-Fe	2001	Sport-Utility	21	28	87	3.3	17.92	3.3
Ford	Taurus	2002	Mid-Size	20	28	65	4.01	5.51	5.06
Mitsubishi	Eclipse	2002	Sub-Compact	23	30	184	5.32	15.91	5.32
Nissan	Altima	2010	Mid-Size	23	32	103	2.44	9.59	2.44
Mitsubishi	Galant	2002	Mid-Size	21	28	112	4.45	12.19	8.11
Toyota	Celica	2000	Compact	28	34	882	6.24	8.74	6.06
Toyota	Camry	2004	Mid-Size	24	33	57	0.73	13.76	2.21
Average Error Percentage (magnitude):					4.91	11.33	5.07		

End Result: Fuel Savings

The bottomline: percentage of fuel is saved over fastest, shortest, and GarminEco routes:

End Result: Fuel Savings

The bottomline: percentage of fuel is saved over fastest, shortest, and GarminEco routes:

Crowdsensing challenge #1

Extrapolation from Sparse Data (Conditions of Sparse Deployment)

Extrapolation from Sparse Data

Fuel consumption of A few cars driven on a few roads

Generalization and Modeling

- Regression modeling:
 - Problem: one size does not fit all. Who says that Fords and Toyotas have the same regression model?
- Regression model per car?
 - Problem: Cannot use data collected by some cars to predict fuel consumption of others.
- Challenge: Must jointly determine both (i) regression models and (ii) their scope of applicability, to cover the whole data space within an acceptable modeling error.

Idea #1: Data Clustering (Using Data Cubes)

- Data cubes are clustering technique that group all crowdsensed data according to several *alternative* dimensions (clustering policies) such as by car make, model, or year.
- A regression model is then derived for resulting clusters
- Different clustering policies are evaluated in terms of their fuel prediction error to determine the best policy
- When a navigation request from a new vehicle arrives:
 - The best clustering policy is used to add the vehicle to existing clusters
 - The regression model for this cluster is used to predict the vehicle's fuel consumption

The Regression Cube Model

- Data cells correspond to:
 - Output attributes $Y_c = \{y_i\}$
 - Each associated with k input attributes $x_{i1}, \ldots, x_{ik}, X_c = \{x_{ij}\}$
- Data cells store the following measures:
 - Regression model coefficients:

$$\hat{Y}_c = X_c \hat{\eta}_c$$

Regression modeling error:

$$Err_c = (Y_c - X_c\hat{\eta}_c)^T (Y_c - X_c\hat{\eta}_c)$$

Example of Regression Cubes

- Goal: predict fuel consumption
 - Group by make, model, or year

Example of Regression Cubes

Example of Regression Cubes

Data Cell Measures

- Main challenge: compute data cell measures recursively and without reprocessing raw data
- Measures can be classified as:
 - Distributive $-f(x_1, x_2, x_3) = f(f(x_1, x_2), x_3)$ Efficient
 - Examples: sum, count
 - Algebraic/Compressible An algebraic combination of distributive functions - Efficient
 - Example: average = sum/count
 - Holistic Reprocess raw data Inefficient
 - Example: median

The Challenge in Regression Cubes

 Main problem: Model parameters and estimation error are not distributive

$$\hat{Y}_c = X_c \hat{\eta}_c$$

$$Err_c = \left(Y_c - X_c \hat{\eta}_c\right)^T \left(Y_c - X_c \hat{\eta}_c\right)$$

An Efficient Representation

Compressed representation of a cell c:

- $\rho_c = Y_c^T Y_c$
- $\Theta_c = X_c^T X_c$ $\nu_c = X_c^T Y_c$

 \square n_c

- : scalar value
- $\Theta_c = X_c^T X_c$: vector of size k
 - : *k* by *k* matrix
 - : number of samples

$$\rho_{c} = \sum_{i=1}^{m} \rho_{i} \qquad \nu_{c} = \sum_{i=1}^{m} \nu_{i} \qquad \Theta_{c} = \sum_{i=1}^{m} \Theta_{i} \qquad n_{c} = \sum_{i=1}^{m} n_{c_{i}}$$
These matrices are distributive measures

An Efficient Data Cube for Fuel Consumption Regression Models

Model coefficients:

$$\hat{\eta}_c = (X_c^T X_c)^{-1} X_c^T Y_c = \Theta_c^{-1} \nu_c$$

Error:

$$Err_{c} = (Y_{c} - X_{c}\hat{\eta}_{c})^{T}(Y_{c} - X_{c}\hat{\eta}_{c}) =$$

$$Y_{c}^{T}Y_{c} - (X_{c}\hat{\eta}_{c})^{T}Y_{c} - Y_{c}^{T}X_{c}\hat{\eta}_{c} + (X_{c}\hat{\eta}_{c})^{T}X_{c}\hat{\eta}_{c} =$$

$$\rho_{c} - \hat{\eta}_{c}^{T}\nu_{c} - \nu_{c}^{T}\hat{\eta}_{c} + \hat{\eta}_{c}^{T}\Theta_{c}\hat{\eta}_{c}$$

 Model coefficients and regression error are compressible measures

- Independently find the set of model parameters, L, for each cell, such that:
 - The cell is reliable
 - Corresponding error is minimized
 - Challenge: Exponential number of Ls

Attributes Velocity (v) Mass (m) Frontal area (A) Stop signs (S)

	Error	Reliable
$L = \{v\}$	0.031	yes
$L = \{m\}$	0.152	yes
$L = \{A\}$	0.043	yes
$L = \{S\}$	0.056	yes

Computing data Cell Confidence

- Measure of confidence:
 - Probability at which the actual coefficients are far from the estimate

$$Pr[||\hat{\eta}_{c} - \eta_{c}|| > \delta]$$

$$Pr[||\hat{\eta}_{c} - \eta_{c}|| > \delta] \le \frac{k\sigma^{2}}{\delta^{2}\lambda_{min}(X_{c}^{T}X_{c})}$$

$$\hat{\sigma}^{2} = \frac{Err_{c}}{n_{c}}$$

Reliable Cell:

$$\frac{k\hat{\sigma}^2}{\delta^2\lambda_{min}(\Theta_c)} < 0.05$$

- Independently find the set of model parameters, L, for each cell, such that:
 - The cell is reliable
 - Corresponding error is minimized
 - Challenge: Exponential number of *L*s

Attributes				
Velocity (v)				
Mass (m)				
Frontal area (A)				
Stop signs (S)				

	Error	Reliable
$L = \{v\}$	0.031	yes
$L = \{m\}$	0.152	yes
$L = \{A\}$	0.043	yes
$L = {S}$	0.056	yes

- Independently find the set of model parameters, L, for each cell, such that:
 - The cell is reliable
 - Corresponding error is minimized
 - Challenge: Exponential number of *Ls*

		Error	Reliable
•	$L = \{v, m\} \\ L = \{v, A\} \\ L = \{v, S\}$	0.021 0.030 0.028	no yes yes

- Independently find the set of model parameters, L, for each cell, such that:
 - The cell is reliable
 - Corresponding error is minimized
 - Challenge: Exponential number of *Ls*

	Error	Reliable
 L = {v, m} L = {v, A} L = {v, S} 	0.021 0.030 0.028	no yes <mark>yes</mark>

Frontal area (A) Stop signs (S)

- Independently find the set of model parameters, L, for each cell, such that:
 - The cell is reliable
 - Corresponding error is minimized
 - Challenge: Exponential number of *L*s

$$\begin{array}{c|c} L = \{v\} \\ L = \{m\} \\ L = \{M\} \\ L = \{A\} \\ L = \{S\} \end{array} \xrightarrow{} \begin{array}{c} L = \{v, m\} \\ L = \{v, A\} \\ L = \{v, S, A\} \end{array} \xrightarrow{} \begin{array}{c} Error \\ 0.024 \\ 0.026 \end{array} \xrightarrow{} \begin{array}{c} no \\ no \end{array}$$

- Independently find the set of model parameters, L, for each cell, such that:
 - The cell is reliable
 - Corresponding error is minimized
 - Challenge: Exponential number of *L*s

$$\begin{array}{c} L = \{v\} \\ L = \{m\} \\ L = \{M\} \\ L = \{A\} \\ L = \{S\} \end{array} \xrightarrow{} \begin{array}{c} L = \{v, m\} \\ L = \{v, A\} \\ L = \{v, S\} \end{array} \xrightarrow{} \begin{array}{c} L = \{v, S, m\} \\ L = \{v, S, A\} \\ L = \{v, S\} \end{array}$$

Reduced Model: {v, S}

Accuracy Results

- The sampling regression cube improves prediction accuracy significantly
- A regression cube without model reduction is even worse than a single model!

Error Distribution in Fuel Prediction

Crowdsensing Challenge #2

Privacy

Possible Solution: Privacy via Anonymity

- Share data (e.g., GPS trajectory), but not user ID
- Problems?

Alternative Idea: Data Perturbation

- Develop perturbation that preserves privacy of individuals
 - Cannot infer individuals' data without large error
 - Reconstruction of community distribution can be achieved within proven accuracy bounds
 - Perturbation can be applied by non-expert users

Intuitive Approach

 Client adds noise time-series with co-variance that largely mimics covariance of actual data (overlap in frequency domain)

Intuitive Approach

- Client adds noise time-series with co-variance that largely mimics covariance of actual data (overlap in frequency domain)
- Users send their perturbed data to aggregation server

Intuitive Approach

- Client adds noise time-series with co-variance that largely mimics covariance of actual data (overlap in frequency domain)
- Users send their perturbed data to aggregation server
- Given perturbed community distribution and noise, server uses deconvolution to reconstruct original data distribution at any point in time

Perturbing Speed of Traffic

Reconstruction of Average Speed

Reconstruction of Community Speed Distribution

Real community distribution of speed

Reconstructed community distribution of speed

Perturbing Speed and Location

Clients lie about both location and speed

Reconstruction Accuracy

Real versus reconstructed speed

Real community distribution of speed

Reconstructed community distribution of speed

More on Reconstruction Accuracy

Real versus reconstructed speed on Washington St., Champaign

Real community distribution of speed

Reconstructed community distribution of speed

How Many are Speeding?

 Real versus estimated percentage of speeding vehicles on different streets (from data of users who "lie" about both speed and location)

Street	Real % Speeding	Estimated % Speeding
University Ave	15.6%	17.8%
Neil Street	21.4%	23.7%
Washington Street	0.5%	0.15%
Elm Street	6.9%	8.6%

Conclusions

- A green navigation service was described that determines the most fuel-efficient routes for drivers using crowd-sourced information
- Several challenges were involved
 - Extrapolation from scarce data
 - Privacy
 - Handling unreliable sources
- Results
 - The service saves up to 20% of gas compared to typical navigation options.
 - Works well in conditions of sparse deployment
 - Leverages unreliable sources to construct accurate traffic maps
- Limitations:
 - Evaluated in a small town with little or no congestion
 - Benefits are potentially larger in bigger cities with more extreme traffic conditions: large-city evaluation left as future work