!'_ Final Review

!'_ PART I

Reliability

Reliability

= Reliability for a giving mission duration t,
R(t), is the probability of the system working

as specified (i.e., probability of no failures)
for a duration that is at least as long as t.

= The most commonly used reliability function
is the exponential reliability function:

From queueing theory:
R(t) —p M . Probability of zero

independent arrivals in t
time units (Poisson
arrival process)

where A is the failure rate.

Reliability

= The most commonly used reliability function
is the exponential reliability function:

R(t)=e™

where A is the failure rate.

= Mean time to failure (MTTF): 1/ A

i Simple Reliability Modeling

() (1) —

= Total failure rate = A+ 4,
= Mean time to failure = 1/(1,+ 4,)

= Total reliability: -
R(t) = r(D)r,(t) =e ")

i Simple Reliability Modeling

ry(t)

(1)

= Total reliability:

Note: This system needs
at least one of the two
components to function.

R(1) =1-(1 - (1)L -r,(1))

i Triple Modular Redundancy

Note: This system needs
r(t) at least two of the three
components to function.

|

r(t)

= Total reliability:
R(t) =r°(t)+3r*(t)(L-r(t))

i Other Implications

R(Effort, Complexity, t) = exCUE

= Note: splitting the effort greatly reduces
reliability.

Simplex Architectural Pattern

A simple verifiable core; diversity in the form of 2

alternatives; feedback control of the software execution.

Simple high
assurance

control subsystem

v

Switch
Logic

Complex high
performance

A4

Plant

control subsystem

/

/ Data Flow Block Diagram

|Is safety
guaranteed?
If not, switch

/

Better performance, but less reliable

i Well Formed Dependencies

= Informal intuition: A reliable component
should not depend on a less reliable
component (it defeats the purpose).

= Design guideline: Use but do not depend
on less reliable components

Review of Important
i Theorems

= Total Probability Theorem:
P(A) = P(A|C,) P(C)) + ... + P(AIC,) P(C)
where C,, ..., C, cover the space of all possibilities

= Bayes Theorem:
P(A|B) = P(B|A). P(A)/P(B)

= Other: P(A,B) = P(A|B) P(B)

!'_ PART I

Timeliness

i Some Terminology

= Tasks, periods, arrival-time, deadline,
execution time, etc.

Arrival time, a;
(Release time, ;)

Execution time, e,
(Computation time, c;)

Starttime, s; Finish time, f.

Deadline, d,

Task i

Arrival of
Next invocation

Relative Deadline, D;

Time

Period, P;

i Utilization Bounds

U< UygliSa

s Utilization =) — sufficient but
Z P @ Schedulable not necessary
e Unschedulable schedulability
® condition
® O
e
e © ® ®
o e
O
e
o ble)
hedula 0
All green area (€
NN I R U A A AN N N AN A N N N NN
= Modified Question: is there a threshold U, 4 such that Task Set

= When U < U, deadlines are met

= When U > U, deadlines may or may not be missed

i The Schedulability Condition

For n independent periodic tasks with periods equal to
deadlines:

The utilization bound of EDF = 1.

The Utilization bound of RM is:
U= n(Z% —1)

n>o U—>oIn2

Ri
|:Z FCJ

‘L Example R =1+C

p I : Interference of higher priority
C J tasks, HP with task i.
] —>

4
v

v

/
. . Ri :
Consider a system of two tasks:

Task 1: P,=1.7, D,=0.5, C;=0.5
Task 2: P,=8, D,=3.2, C,=2

v

A

v

/ U

R '
Consider a system of two tasks:

Task 1: P,=1.7, D,=0.5, C;=0.5
Task 2: P,=8, D,=3.2, C,=2

Ri
IZZ FCJ

jeHP j

R =1+C,

I : Interference of higher priority
tasks, HP with task i.

19 =C, =05
RY =194+C,=25

(0)
|m:{%§wCl[f$105 1
1 |

RY=19+C, =3

(1)
|QM:BL-Q {3105 1
P 1.7

(2 _ 1@ _
Ry =1""+C, =3
3 <3.2-> 0K

i Blocking and Priority Inversion

= Consider the case below: a series of
intermediate priority tasks is delaying a

higher-priority one Attempt to lock S
High-priority task — results in blocking

Preempt. Unbounded Priority Inversion
Intermediate-priority tasks

Lock S Preempt.
Low-priority task \‘

!

‘L Priority Inheritance Protocol

= Let a task inherit the priority of any higher-
priority task it is blocking

Attempt to lock S

High-priority task — results in blocking

A CAAARARAAA Unlock S
Preempt. N\
reempt Lock?‘\
Intermediate-priority tasks [e [
Lock S
\ / Unlock S
Low-priority task v

B e

i Maximum Blocking Time

= If all critical sections are equal (of length B):
= Blocking time = B min (N, M)
(Why?)
= If they are not equal

= Find the worst (maximum length) critical section
for each resource

= Add up the top min (N, M) sections in size

= The total priority inversion time for task i is
called B,

‘L Schedulability Test

VI,1<1<n,
B, i Co . nui
—+ >y £<1(27 -1

P kZ:;‘Pk

i Problem: Deadlock

Deadlock occurs if two tasks locked two semaphores in
opposite order
Lock R2

Try R1, Block
—

. —

Preemption

/ AN

Lock R1 Try R2, Deadlock

i Priority Ceiling Protocol

= Definition: The priority ceiling of a semaphore is
the highest priority of any task that can lock it

= A task that requests a lock R, is denied if its
priority is not higher than the highest priority
ceiling of all currently locked semaphores (say it
belongs to semaphore R)
= The task is said to be blocked by the task holding lock

Rh

= A task inherits the priority of the top higher-

priority task it is blocking

‘L Maximum Blocking Time

Priority Inheritance Protocol

Need Red
Need Blue
/ Need

T

- L

‘L Maximum Blocking Time

Need Blue but Priority Ceiling Protocol
Priority is lower
Need Red but

Than Red ceiling D
Priority is lower

Need but Than Red ceiling
Priority is lower

Than Red ce|I|ng
A -_L

\

iy L

Example of a Polling Server

= Polling server:
= Period P, =5
O BUdget Bs = 2
= Periodic task
O P — 4
s C = 15
= All aperiodic arrivals have C=1

— — — —

—_—
%periodic arrivals

i Deferrable Server

= Keeps the balance of the budget until the
end of the period

= Example (continued)
— — — — e

Polling
_ Budget ‘:
nage Server
Aperiodic arrivals

N SN Deferrable
1 _

Server

Worst-Case Scenario

1.0 A U
P i
Task 1] |—1 » Cli
Task 2 C, | 0.69
[
Deferred) > 0.652

Previous

U
Invocatioxk | 0.186 1.0
Taskl « 1, C|

Task 2 C, | Up <In 3
— U, +1
< P2 >

Exercise: Derive the utilization bound for a deferrable server plus one periodic task

‘L Priority Exchange Server

Example

Aperiodic tasks

Priority Exchange
Server

)
Periodic h E\-

Tasks °
‘ o]

Sporadic Server

"

= Server is said to be active if it is in the running or
ready queue, otherwise it is idle.

= When an aperiodic task comes and the budget is
not zero, the server becomes active

= Every time the server becomes active, say at t,, it

sets rep

future, t, + P, (but does not

re

s W
re

[ta €] (>)

plenishment amount).
nen the server becomes ic

hlenishment amount to ca

U_<lIn
U, +1)

enishment time one period into the

decide on

le, say at t,, set
pacity consumed in

i Slack Stealing Server

s Compute a slack function A(t, t;) that says
how much total slack is available

= Admit aperiodic tasks while slack is not
exceeded

!'_ PART III

Energy

i Power of Computation

= Terminology
= R : Power spent on computation
= V : Processor voltage
« f : Processor clock frequency
= R, : Leakage power
= Power spent on computation is:
= R=k, Vf +R,
where k, is a constant

i Energy of Computation

= Power spent on computation is:
= R=k, Vf +R,

= Consider a task of length C clock cycles and
a processor operating at frequency f

= The execution time is t = C/f

= Energy spent is:
« E=Rt=(k, V2f+R,)(C/f)

Reducing Processor Frequency
Good or Bad?

= Does it make sense to operate the processor at
a reduced speed to save energy? Why or why
not?
Possible Answer:
E=Rt=(k,V2f+R,)(C/f) =k, V 2C +R,C/f
= Conclusion: E is minimum when f is maximum.
- Operate at top speed

= Is this really true? What are the underlying
assumptions?

Dynamic Voltage Scaling (DVS):
i Reducing Voltage and Frequency

= Processor voltage can be decreased if clock
frequency is decreased

= Voltage and frequency can be decreased roughly
proportionally.

= In this case (where V ~f):
R=k f3+R,
E = (ki 3 +R,)(C/f) =k f2C +R,C/f

Dynamic Voltage Scaling (DVS):
i Reducing Voltage and Frequency

= Processor voltage can be decreased if clock
frequency is decreased

= Voltage and frequency can be decreased
roughly proportionally.

R=k f3+R,
E = (ki 3 +R,)(C/f) =k f2C +R,C/f
= Question: Does reducing frequency (and

voltage) increase or decrease total energy
spend on a task?

Dynamic Voltage Scaling (DVS):
i The Critical Frequency

= There exists a minimum frequency below
which no energy savings are achieved

E =k f2C +R,C/f
dE/df = 2k, fC - R,C/f2=0
RO

f g0

2k,

DVS Algorithm 1:
i Static Voltage Scaling

1. Calculate the critical frequency
2. Calculate the minimum frequency at which
the task set remains schedulable

=« Example: If EDF is used and the utilization is
60% at the maximum frequency f..,, then the
frequency can be decreased to 0.6 f._..

3. Let f,; be the larger of the above two

4. Operate the system at the smallest
frequency at or above f.

DVS Algorithm 2:
i Cycle-conserving DVS

= What if a task finishes early?

» Re-compute the utilization based on the
reduced execution time.

= Calculate the minimum frequency at which the
task set is schedulable using the new
utilization.

» Update task execution times to the WCET
when new invocations are released.

Practical Consideration:

i&ccounting for Off-chip Overhead

= In the preceding discussion, we assumed

that task execution time at frequency f is
C/f, where C is the total cycles needed

= In reality some cycles are lost waiting for
memory access and I/O (Off-chip cycles).

» Let the number of CP
the time spent off-chi

U cycles used be C,, and
D be Coff-chip

= Execution time at frequency f is given by

Ccpu [t + Coff-chip

i Recap

Bad idea! Good idea! Good idea down to
a Critical Frequency
only

Processor Performance States

i (P-States)

= PO max power and frequency
= P1 less than PO, voltage/frequency scaled
= P2 less than P1, voltage/frequency scaled

= Pn less than P(n-1), voltage/frequency
scaled

Processor "Sleep” States

i (C-states)

= CO: is the operating state.

= C1 (often known as Halt): is a state where the processor is
not executing instructions, but can return to an executing
state instantaneously. All ACPI-conformant processors must
support this power state.

= C2 (often known as Stop-Clock): is a state where the
processor maintains all software-visible state, but may take
longer to wake up. This processor state is optional.

= C3 (often known as Sleep) is a state where the processor
does not need to keep its cache, but maintains other state.
This processor state is optional.

Turning Processors Off
The Cost of Wakeup

= Energy expended on wakeup, E, ..

= T0 sleep or not to sleep?
= Not to sleep (for time t):
Eno—sleep = (kv vV #f +RO) t
= 10 sleep (for time t) then wake up:
Esleep = I:)sleep t+E
= To save energy by sleeping: Eeep, < Eppgieep

Ewake

t> >
kVV f+R,—P

sleep

wake

DPM and the Problem with
‘L Work-conserving Scheduling

= No opportunity to sleep ®

Task 1 (C=2, P=12)

m]]]]
Task 2 (C=1, P=16)
o i i B
[[
X X X

Minimum sleep period

DPM and the Problem with
‘L Work-conserving Scheduling

= Must batch! ©

Task 1 (C=2, P=12)

m | | | = =
Task 2 (C=1, P=16)
| b B B | N
i
V4 V4 V4

Minimum sleep period

i How Many Processors to Use?

= Consider using one processor at frequency f
versus two at frequency f/2

= Case 1: Total power for one processor
s ki T3+R,

= Case 2: Total power for two processors
o« 2 {k (F/23 +R} =k f3/ 4 + 2 R,

= The general case: n processors
s N{ki (f/n)3+R} =k f3/n2+nR,

i How Many Processors to Use?

= The general case: n processors
= Power =n{k; (f/n)*+R} =k:f3/n?+nR,
= dPower/dn=-2k.f3/n3+R,=0

oK. f°
N =3
RO

Classical Feedback Control

i Loops

Desired
Measured Output -

Output

Stability — Recap

Phase equation: %, pi(f) = = — fis obtained

Gain equation: TT; g;(f) must be less than 1 for stability

g1(f) /pi(f) g2(f) /p2(f) g93(f) / p3(f)

Lm

T - >

d
<«

Measured Temperature -

g4(f) / p4(f)

Summary of Basic Elements

i Input = sin (wt)

Element Gain Phase
Integrator 1/w -t/2
Differentiator W /2

Pure delay element | 1 -wD
(Delay = D)

First order lag (time 5 - tan! (w 1)
constant = 1) K/ \/ 1+ (rw)

Pure gain K 0

(Gain = K)

Note:
w=2mf

Where f, is
the loop
frequency of
oscillation

i Steady State Error

At steady state the system “catches up” — phase shift is zero.

T
T, — e gi(f) g2(f) g3(f) g4(f) = e e= r
1+ Hi g;(f)
g1(f) g2(f) 93(f)
T u m

T - >

Measured Temperature -

g4(f)

