
Final Review

PART I

Reliability

Reliability

 Reliability for a giving mission duration t,
R(t), is the probability of the system working
as specified (i.e., probability of no failures)
for a duration that is at least as long as t.

 The most commonly used reliability function
is the exponential reliability function:

where l is the failure rate.

tetR λ−=)(
From queueing theory:
Probability of zero
independent arrivals in t
time units (Poisson
arrival process)

Reliability

 The most commonly used reliability function
is the exponential reliability function:

where l is the failure rate.

 Mean time to failure (MTTF): 1/ l

tetR λ−=)(

Simple Reliability Modeling

 Total failure rate = l1+ l2

 Mean time to failure = 1/(l1+ l2)

 Total reliability:

r1(t) r2(t)

tetrtrtR)(
21

21)()()(λλ +−==

Simple Reliability Modeling

 Total reliability:

r2(t)

r1(t)

))(1))((1(1)(21 trtrtR −−−=

Note: This system needs
at least one of the two
components to function.

Triple Modular Redundancy

r(t)

r(t)

r(t)

Note: This system needs
at least two of the three
components to function.

 Total reliability:

))(1)((3)()(23 trtrtrtR −+=

8

Other Implications

R(Effort, Complexity, t) = e-kC t/E

 Note: splitting the effort greatly reduces
reliability.

9

Simplex Architectural Pattern

Simple high
assurance
control subsystem

Complex high
performance
control subsystem

Data Flow Block Diagram

Plant

Switch
Logic

A simple verifiable core; diversity in the form of 2
alternatives; feedback control of the software execution.

Better performance, but less reliable

Is safety
guaranteed?
If not, switch

Well Formed Dependencies

 Informal intuition: A reliable component
should not depend on a less reliable
component (it defeats the purpose).

 Design guideline: Use but do not depend
on less reliable components

Review of Important
Theorems

 Total Probability Theorem:

P(A) = P(A|C1) P(C1) + … + P(A|Cn) P(Cn)

where C1, …, Cn cover the space of all possibilities

 Bayes Theorem:

P(A|B) = P(B|A). P(A)/P(B)

 Other: P(A,B) = P(A|B) P(B)

PART I

Timeliness

Some Terminology

 Tasks, periods, arrival-time, deadline,
execution time, etc.

Time

Arrival time, ai

(Release time, ri)
Deadline, di

Period, Pi

Relative Deadline, Di

Arrival of
Next invocation

Task i

Execution time, ei

(Computation time, ci)

Start time, si Finish time, fi

Utilization Bounds

Utilization

Task Set

Schedulable
Unschedulable

 Modified Question: is there a threshold Ubound such that
 When U < Ubound deadlines are met

 When U > Ubound deadlines may or may not be missed

?

U < Ubound is a
sufficient but
not necessary
schedulability
condition

∑=
i i

i

P

C

The Schedulability Condition






 −= 12

1
nnU

2ln→∞→ Un

For n independent periodic tasks with periods equal to
deadlines:

The utilization bound of EDF = 1.

The Utilization bound of RM is:

Example

Pj
Cj

Pi

Di

Ri
Consider a system of two tasks:

Task 1: P1=1.7, D1=0.5, C1=0.5
Task 2: P2=8, D2=3.2, C2=2

ii

j

j

i

HPj

CIR

C
P

R
I

+=












= ∑

∈

I : Interference of higher priority
tasks, HP with task i.

Example

Pj
Cj

Pi

Di

Ri
Consider a system of two tasks:

Task 1: P1=1.7, D1=0.5, C1=0.5
Task 2: P2=8, D2=3.2, C2=2

3

15.0
7.1

3

3

15.0
7.1

5.2

5.2

5.0

2
)2()2(

2

1

1

)1(
2)2(

2
)1()1(

2

1

1

)0(
2)1(

2
)0()0(

2

1
)0(

=+=

=







=








=

=+=

=





=








=

=+=

==

CIR

C
P

R
I

CIR

C
P

R
I

CIR

CI

3 < 3.2  Ok!

ii

j

j

i

HPj

CIR

C
P

R
I

+=












= ∑

∈

I : Interference of higher priority
tasks, HP with task i.

Blocking and Priority Inversion

 Consider the case below: a series of
intermediate priority tasks is delaying a
higher-priority one

High-priority task

Low-priority task

Lock S

Preempt.

Intermediate-priority tasks

Preempt.

…

Unbounded Priority Inversion

Attempt to lock S
results in blocking

Priority Inheritance Protocol

 Let a task inherit the priority of any higher-
priority task it is blocking

High-priority task

Low-priority task

Lock S

Preempt.

Intermediate-priority tasks …

Attempt to lock S
results in blocking

Lock S
Unlock S

Unlock S

Maximum Blocking Time

 If all critical sections are equal (of length B):

 Blocking time = B min (N, M)

(Why?)

 If they are not equal

 Find the worst (maximum length) critical section
for each resource

 Add up the top min (N, M) sections in size

 The total priority inversion time for task i is
called Bi

Schedulability Test

)12(

,1,

/1

1

−≤+

≤≤∀

∑
=

i
i

k k

k

i

i i
P

C

P

B

nii

Problem: Deadlock

Lock R1

Lock R2

Try R1, Block

Try R2, Deadlock

Preemption

Deadlock occurs if two tasks locked two semaphores in
opposite order

Priority Ceiling Protocol

 Definition: The priority ceiling of a semaphore is
the highest priority of any task that can lock it

 A task that requests a lock Rk is denied if its
priority is not higher than the highest priority
ceiling of all currently locked semaphores (say it
belongs to semaphore Rh)

 The task is said to be blocked by the task holding lock
Rh

 A task inherits the priority of the top higher-
priority task it is blocking

Maximum Blocking Time

Priority Inheritance Protocol

Need Red
Need Blue

Need Yellow

Maximum Blocking Time

Priority Ceiling Protocol

Need Yellow but
Priority is lower
Than Red ceiling

Need Blue but
Priority is lower
Than Red ceiling Need Red but

Priority is lower
Than Red ceiling

Done

Example of a Polling Server

 Polling server:
 Period Ps = 5
 Budget Bs = 2

 Periodic task
 P = 4
 C = 1.5

 All aperiodic arrivals have C=1

Aperiodic arrivals

Deferrable Server

 Keeps the balance of the budget until the
end of the period

 Example (continued)

Aperiodic arrivals

Budget Polling
Server

Deferrable
Server

Worst-Case Scenario

C1
P1

P2

Task 1

Task 2 C2

C1
P1

P2

Task 1

Task 2 C2

Deferred
Previous
Invocation










+

+
≤

12

2
ln

s

s
p

U

U
U

Exercise: Derive the utilization bound for a deferrable server plus one periodic task

0.186

0.652

0.69

1.0

1.0

Us

U

Priority Exchange Server

Aperiodic tasks

Priority Exchange
Server

Periodic
Tasks

Example

Sporadic Server

 Server is said to be active if it is in the running or
ready queue, otherwise it is idle.

 When an aperiodic task comes and the budget is
not zero, the server becomes active

 Every time the server becomes active, say at tA, it
sets replenishment time one period into the
future, tA + Ps (but does not decide on
replenishment amount).

 When the server becomes idle, say at tI , set
replenishment amount to capacity consumed in
[tA, tI]










+
≤

1

2
ln

s

p
U

U

Slack Stealing Server

 Compute a slack function A(ts, tf) that says
how much total slack is available

 Admit aperiodic tasks while slack is not
exceeded

PART III

Energy

Power of Computation

 Terminology

 R : Power spent on computation

 V : Processor voltage

 f : Processor clock frequency

 R0 : Leakage power

 Power spent on computation is:

 R = kv V 2f +R0

where kv is a constant

Energy of Computation

 Power spent on computation is:

 R = kv V 2f +R0

 Consider a task of length C clock cycles and
a processor operating at frequency f

 The execution time is t = C/f

 Energy spent is:

 E = R t = (kv V 2f +R0)(C/f)

Reducing Processor Frequency
Good or Bad?

 Does it make sense to operate the processor at
a reduced speed to save energy? Why or why
not?

Possible Answer:

E = R t = (kv V 2f +R0)(C/f) = kv V 2C +R0C/f

 Conclusion: E is minimum when f is maximum.

 Operate at top speed

 Is this really true? What are the underlying
assumptions?

Dynamic Voltage Scaling (DVS):
Reducing Voltage and Frequency

 Processor voltage can be decreased if clock
frequency is decreased

 Voltage and frequency can be decreased roughly
proportionally.

 In this case (where V ~ f):

R = kf f 3 +R0

E = (kf f 3 +R0)(C/f) = kf f 2C +R0C/f

Dynamic Voltage Scaling (DVS):
Reducing Voltage and Frequency

 Processor voltage can be decreased if clock
frequency is decreased

 Voltage and frequency can be decreased
roughly proportionally.

R = kf f 3 +R0

E = (kf f 3 +R0)(C/f) = kf f 2C +R0C/f

 Question: Does reducing frequency (and
voltage) increase or decrease total energy
spend on a task?

Dynamic Voltage Scaling (DVS):
The Critical Frequency

 There exists a minimum frequency below
which no energy savings are achieved

E = kf f 2C +R0C/f

dE/df = 2kf f C – R0C/f 2 = 0

3
0

2 fk

R
f =

DVS Algorithm 1:
Static Voltage Scaling

1. Calculate the critical frequency

2. Calculate the minimum frequency at which
the task set remains schedulable

 Example: If EDF is used and the utilization is
60% at the maximum frequency fmax, then the
frequency can be decreased to 0.6 fmax.

3. Let fopt be the larger of the above two

4. Operate the system at the smallest
frequency at or above fopt.

DVS Algorithm 2:
Cycle-conserving DVS

 What if a task finishes early?

 Re-compute the utilization based on the
reduced execution time.

 Calculate the minimum frequency at which the
task set is schedulable using the new
utilization.

 Update task execution times to the WCET
when new invocations are released.

Practical Consideration:
Accounting for Off-chip Overhead

 In the preceding discussion, we assumed
that task execution time at frequency f is
C/f, where C is the total cycles needed

 In reality some cycles are lost waiting for
memory access and I/O (Off-chip cycles).

 Let the number of CPU cycles used be Ccpu and
the time spent off-chip be Coff-chip

 Execution time at frequency f is given by

Ccpu /f + Coff-chip

Recap

DVS

Reduce Frequency
and Voltage

Reduce Frequency
Only

Processor
Always On

Processor Sleeps
when Idle

Processor Sleeps
when Idle

Good idea!Bad idea! Good idea down to
a Critical Frequency

only

Processor Performance States
(P-States)

 P0 max power and frequency

 P1 less than P0, voltage/frequency scaled

 P2 less than P1, voltage/frequency scaled

 ...

 Pn less than P(n-1), voltage/frequency
scaled

Processor “Sleep” States
(C-states)

 C0: is the operating state.

 C1 (often known as Halt): is a state where the processor is
not executing instructions, but can return to an executing
state instantaneously. All ACPI-conformant processors must
support this power state.

 C2 (often known as Stop-Clock): is a state where the
processor maintains all software-visible state, but may take
longer to wake up. This processor state is optional.

 C3 (often known as Sleep) is a state where the processor
does not need to keep its cache, but maintains other state.
This processor state is optional.

Turning Processors Off
The Cost of Wakeup

 Energy expended on wakeup, Ewake

 To sleep or not to sleep?

 Not to sleep (for time t):

Eno-sleep = (kv V 2f +R0) t

 To sleep (for time t) then wake up:

Esleep = Psleep t + Ewake

 To save energy by sleeping: Esleep < Eno-sleep

sleepv

wake

PRfVk

E
t

−+
>

0
2

DPM and the Problem with
Work-conserving Scheduling

 No opportunity to sleep 

Task 1 (C=2, P=12)

Task 2 (C=1, P=16)

Minimum sleep period

DPM and the Problem with
Work-conserving Scheduling

 Must batch! ☺

Task 1 (C=2, P=12)

Task 2 (C=1, P=16)

Minimum sleep period

How Many Processors to Use?

 Consider using one processor at frequency f
versus two at frequency f/2

 Case 1: Total power for one processor

 kf f 3+R0

 Case 2: Total power for two processors

 2 {kf (f /2)3 +R0} = kf f 3/ 4 + 2 R0

 The general case: n processors

 n {kf (f /n)3 +R0} = kf f 3/ n 2 + n R0

How Many Processors to Use?

 The general case: n processors

 Power = n {kf (f /n)3 +R0} = kf f 3/ n 2 + n R0

 dPower/dn = -2 kf f 3/ n 3 + R0 = 0

3

0

32

R

fk
n

f
=

Classical Feedback Control
Loops

Controller
(Policy)

Process

Sensor

Desired
Set Point Output

Measured Output

Actuator
(Mechanism)

-

Feedforward

Stability – Recap

Proportional
Controller
(Policy)

Room

Thermometer

Measured Temperature

Heater/Cooler
(Mechanism)

-

e u mTr
T

Tm

g1(f) p1(f) g2(f) p2(f) g3(f) p3(f)

g4(f) p4(f)

Phase equation: Si pi(f) = p f is obtained

Gain equation: Pi gi(f) must be less than 1 for stability

Summary of Basic Elements
Input = sin (wt)

Element Gain Phase

Integrator 1/w -p/2

Differentiator w p/2

Pure delay element
(Delay = D)

1 - w D

First order lag (time
constant = t)

- tan-1 (w t)

Pure gain
(Gain = K)

K 0

Note:

w = 2 p fosc

Where fosc is
the loop
frequency of
oscillation

2)(1 wK τ+

Steady State Error

Proportional
Controller
(Policy)

Room

Thermometer

Measured Temperature

Heater/Cooler
(Mechanism)

-

e u mTr
T

Tm

g1(f) g2(f) g3(f)

g4(f)

At steady state the system “catches up” – phase shift is zero.

Tr – e g1(f) g2(f) g3(f) g4(f) = e

∏+
=

i i

r

fg

T
e

)(1

