!'_ Energy

Continued



i Recap

v v

Bad idea! Good idea!

Should we do frequency scaling (to save energy)?

v

Good idea down to
a Critical Frequency
only




i Recap

v v

Bad idea! Good idea!

Should we do frequency scaling (to save energy)?




Advanced Configuration and
i Power Interface (ACPI)

= Defines different power saving states in a
platform-independent manner

= The standard was originally developed by
Intel, Microsoft, and Toshiba (in 1996),
then later joined by HP, and Phoenix.

= The latest version is "Revision 6.1,"
published by UEFI (March 2016).




i Global States

= GO: working

s G1: Sleeping and hibernation (several degrees
available)

s G2:, Soft Off. almost the same as G3 Mechanical
Off, except that the power supply still supplies
power, at a minimum, to the power button to allow
wakeup. A full reboot is required.

s G3, Mechanical Off. The computer's power has
been totally removed via a mechanical switch.



Processor Performance States

i (P-States)

= PO max power and frequency
= P1 less than PO, voltage/frequency scaled
= P2 less than P1, voltage/frequency scaled

= Pn less than P(n-1), voltage/frequency
scaled



Processor "Sleep” States

i (C-states)

= CO: is the operating state.

= C1 (often known as Halt): is a state where the processor is
not executing instructions, but can return to an executing
state instantaneously. All ACPI-conformant processors must
support this power state.

= C2 (often known as Stop-Clock): is a state where the
processor maintains all software-visible state, but may take
longer to wake up. This processor state is optional.

= C3 (often known as Sleep) is a state where the processor
does not need to keep its cache, but maintains other state.
This processor state is optional.




Turning Processors Off
The Cost of Wakeup

= Energy expended on wakeup, E, ;.
= T0 sleep or not to sleep?



Turning Processors Off
The Cost of Wakeup

= Energy expended on wakeup, E, ..

= T0 sleep or not to sleep?
= Not to sleep (for time t):
Eno—sleep = (kv vV #f +RO) t
= 10 sleep (for time t) then wake up:
Eceon = Peeen t + E

sleep sleep wake



Turning Processors Off
The Cost of Wakeup

= Energy expended on wakeup, E, ..

= T0 sleep or not to sleep?
= Not to sleep (for time t):
Eno—sleep = (kv vV #f +RO) t
= 10 sleep (for time t) then wake up:
Esleep = I:)sleep t+E
= To save energy by sleeping: Eeep, < Eppgieep

Ewake

t> >
kVV f+R,—P

sleep

wake




Turning Processors Off
The Cost of Wakeup

= Energy expended on wakeup, E, ..

= T0 sleep or not to sleep?
= Not to sleep (for time t):
Eno—sleep = (kv vV #f +RO) t
= 10 sleep (for time t) then wake up:
Esleep = I:)sleep t+E
= To save energy by sleeping: Eeep, < Eppgieep

E K Minimum sleep
> /2T . “— interval
V2f +R,—P

sleep

wake




i Dynamic Power Management

= DPM refers to turning devices off (or
putting them in deep sleep modes)

= Device wakeup has a cost that imposes a
minimum sleep interval (a breakeven time)

= DPM must maximize power savings due to
sleep while maintaining schedulability



DPM and the Problem with
i Work-conserving Scheduling

= Example:

Task 1 (C=2, P=12)

Task 2 (C=1, P=16)




DPM and the Problem with
‘L Work-conserving Scheduling

= Example:

Task 1 (C=2, P=12)

ol T T T T
Task 2 (C=1, P=16)
B i i B
[ [

Minimum sleep period



DPM and the Problem with
‘L Work-conserving Scheduling

= Example:

Task 1 (C=2, P=12)

ol T T T T
Task 2 (C=1, P=16)
B i i B
[ [

Minimum sleep period



DPM and the Problem with
‘L Work-conserving Scheduling

= No opportunity to sleep ®

Task 1 (C=2, P=12)

m ] ] ] ]
Task 2 (C=1, P=16)
o i i B
[ [
X X X

Minimum sleep period



DPM and the Problem with
‘L Work-conserving Scheduling

= Must batch! ©

Task 1 (C=2, P=12)

m | | | = =
Task 2 (C=1, P=16)
| b B B | N
i
V4 V4 V4

Minimum sleep period



A Schedulability Question:

How to Analyze Schedules with Sleep

i Periods?

Task 1 (C=2, P=12)
m | - | |

Task 2 (C=1, P=16)

| W B B | N

e

Minimum sleep period



A Schedulability Question:

How to Analyze Schedules with Sleep

i Periods?

= Option 1: Treat sleep periods like a periodic task. Use the Liu
and Layland utilization bound for schedulability. Problems?

Task 1 (C=2, P=12)

m ] ] I
Task 2 (C=1, P=16)
B B B | B

Task 3 (C=11, P=16)
I | ]




A Schedulability Question:

How to Analyze Schedules with Sleep

i Periods?

= Option 1: Treat sleep periods like a periodic task. Use the Liu
and Layland utilization bound for schedulability. Problems?

= Does not work because the "sleep task” cannot be preempted, whereas
the rest of the tasks are preemptible. The utilization bound works only
for fully preemptive scheduling.

Task 1 (C=2, P=12)

il ]
Task 2 (C=1, P=16)
. N |

Task 3 (C=11, P=16)




A Schedulability Question:

How to Analyze Schedules with Sleep

i Periods?

= Option 2: Treat sleep periods like the highest-priority periodic
task. Use the Liu and Layland utilization bound for
schedulability. Problems?

Task 1 (C=2, P=12)

Task 2 (C=1, P=16)
i i B B

Task 3 (C=11, P=16)
I | ]




A Schedulability Question:

How to Analyze Schedules with Sleep

i Periods?

= Option 2: Treat sleep periods like the highest-priority periodic
task. Use the Liu and Layland utilization bound for
schedulability. Problems?

= Does not work because the "sleep task” may need to have a larger
period than the actual top-priority task, which contradicts rate-
monotonic scheduling. The bound does not work.

Task 1 (C=2, P=12)

Task 2 (C=1, P=16)
i i B B

Task 3 (C=11, P=16)
I | ]




A Schedulability Question:

How to Analyze Schedules with Sleep

i Periods?

= Option 3: Treat sleep periods like the highest-priority periodic
task. Use exact response time analysis for schedulability.
Problems?

Task 3 (C=11, P=16)

_____]__

Task 1 (C=2, P=12)
| | |
Task 2 (C=1, P=16)

B i i | m




i Device Forbidden Regions

= Option 3: Treat sleep periods like the highest-priority periodic
task. Use exact response time analysis for schedulability.
Problems?
= A Valid solution, but pessimistic.
(Called: Device Forbidden Regions. Published in RTAS 2008.)

Task 3 (C=11, P=16)

—————

Task 1 (C=2, P=12)

| 1] | |

Task 2 (C=1, P=16)
| ul m | m |




i Intel CPU Clock Speed

-
i

Al o

L

= Moore’s Law
(1980-2005)

= Question: Why
did the speed
curve saturate
(around 2005)?



Computational Power (per

i Die)

= Note the
exponential rise
iIn power
o consumption

= Question: how
come it does not
saturate?




Transistor count

Microprocessor Transistor Counts 1971-2011 & Moore’s Law

2,600,000,000 -
1,000,000,000 -

100,000,000 -

10,000,000

1,000,000 4

100,000 -

10,000

2,300 -

Moore’s Law

Transistor count
doubles every two
years

Puaritiem 4 @

16-Core sm 13
Ste-Core Coee (7, |

SheCarm ?a):\ N 010~Cwa Xeon Veastmam-EX

Duai-Core harium 2@ e -§o0ms POWER?
L4 “ 21
ANHD K10 gﬁw E’,'r., arum Tuowta
FOHERG @ " [ M7= §Coee Xoon NehakrEX
Hanum 2 with 3VE8 coche @ "R Six-Core Optercn 2600
AMD xzc' Coeni ? 1Quiady
ore 2 Duo
Ranium 2 @ t E

AN K8

/.B.:r\m ® Atom

curve shows transistor //M:(;: E:;S ﬁm
count doubling every 'N 2 Puctium &
two years P J:AMD kS
o:usso/f’/
e Named after Intel co-
L founder Gordon E. Moore,
gl who described the trend in
o his 1965 paper
coe ¥ anos e
m’/&;ca a0z
19'71 19I80 19'90 20'00 2(;1 1

Date of introduction



i Single-core computer

CPU chip

register file

1r

;1 ALU

bus interface

vl

N
—

e

sygtem bus

memory bus

|

/0
bridge

main
memory

ﬁ

[l

<

Use graphics
controller adapter
mouse keyboard monitor

/O bus

disk

controller

HHE>

Expansion slots for
other devices such

as network adapters.

15-213, S'06

28



‘L Single-core CPU chip

the single core

CPU chip
register file /
—A
+ Y| ALU
\‘47
o system bus
":.____vf

bus interface

>
>

-

29



i Multi-core Architectures

= Replicate multiple processor cores on a
single die.

Core 1 Core 2 Core 3 Core 4

register file register file register file register file

gALU aALU QALU <|§|>ALU

1L 1L 17 1L

Multi-core CPU chip 30




Interaction with the
i Operating System

= OS perceives each core as a separate processor

= OS scheduler maps threads/processes
to different cores

= Major OSes support multi-core today:
Windows, Linux, Mac OS X, ...

31



i DVS on Multiprocessors

= Consider a set of tasks, where task i has
period P, and total number of cycles C,
= Sort tasks from largest to smallest utilization C, / P,

= Assign tasks one at a time (largest-first) to the
least utilized processor

= Apply one of the previous algorithms on each
processor separately



i Question

= From the perspective of minimizing energy,
is it always a good idea to use up all
processors?



i How Many Processors to Use?

= Consider using one processor at frequency f
versus two at frequency f/2

= Case 1: Total power for one processor
s ki T3+R,

= Case 2: Total power for two processors
o« 2 {k (F/23 +R} =k f3/ 4 + 2 R,



i How Many Processors to Use?

= Consider using one processor at frequency f
versus two at frequency f/2

= Case 1: Total power for one processor
s ki T3+R,

= Case 2: Total power for two processors
o« 2 {k (F/23 +R} =k f3/ 4 + 2 R,

= The general case: n processors
s N{ki (f/n)3+R} =k f3/n2+nR,



i How Many Processors to Use?

= The general case: n processors
= Power =n{k; (f/n)*+R} =k:f3/n?+nR,
= dPower/dn=-2k.f3/n3+R,=0

oK. f°
N =3
RO




i How Many Processors to Use?

= The general case: n processors
= Power =n{k; (f/n)*+R} =k:f3/n?+nR,
= dPower/dn=-2k.f3/n3+R,=0

oK. f°
N =3
RO

= What if n is not an integer?




