
Energy

Continued



Should we do frequency scaling (to save energy)?

Recap

DVS

Reduce Frequency
and Voltage

Reduce Frequency
Only

Processor
Always On

Processor Sleeps
when Idle

Processor Sleeps
when Idle

Good idea!Bad idea! Good idea down to
a Critical Frequency

only



Should we do frequency scaling (to save energy)?

Recap

DVS

Reduce Frequency
and Voltage

Reduce Frequency
Only

Processor
Always On

Processor Sleeps
when Idle

Processor Sleeps
when Idle

Good idea!Bad idea!
3

0

2 fk

R
f =



Advanced Configuration and
Power Interface (ACPI)

 Defines different power saving states in a
platform-independent manner

 The standard was originally developed by
Intel, Microsoft, and Toshiba (in 1996),
then later joined by HP, and Phoenix.

 The latest version is "Revision 6.1,"
published by UEFI (March 2016).



Global States

 G0: working

 G1: Sleeping and hibernation (several degrees
available)

 G2:, Soft Off: almost the same as G3 Mechanical
Off, except that the power supply still supplies
power, at a minimum, to the power button to allow
wakeup. A full reboot is required.

 G3, Mechanical Off: The computer's power has
been totally removed via a mechanical switch.



Processor Performance States
(P-States)

 P0 max power and frequency

 P1 less than P0, voltage/frequency scaled

 P2 less than P1, voltage/frequency scaled

 ...

 Pn less than P(n-1), voltage/frequency
scaled



Processor “Sleep” States
(C-states)

 C0: is the operating state.

 C1 (often known as Halt): is a state where the processor is
not executing instructions, but can return to an executing
state instantaneously. All ACPI-conformant processors must
support this power state.

 C2 (often known as Stop-Clock): is a state where the
processor maintains all software-visible state, but may take
longer to wake up. This processor state is optional.

 C3 (often known as Sleep) is a state where the processor
does not need to keep its cache, but maintains other state.
This processor state is optional.



Turning Processors Off
The Cost of Wakeup

 Energy expended on wakeup, Ewake

 To sleep or not to sleep?



Turning Processors Off
The Cost of Wakeup

 Energy expended on wakeup, Ewake

 To sleep or not to sleep?

 Not to sleep (for time t):

Eno-sleep = (kv V 2f +R0) t

 To sleep (for time t) then wake up:

Esleep = Psleep t + Ewake



Turning Processors Off
The Cost of Wakeup

 Energy expended on wakeup, Ewake

 To sleep or not to sleep?

 Not to sleep (for time t):

Eno-sleep = (kv V 2f +R0) t

 To sleep (for time t) then wake up:

Esleep = Psleep t + Ewake

 To save energy by sleeping: Esleep < Eno-sleep

sleepv

wake

PRfVk

E
t

−+
>

0
2



Turning Processors Off
The Cost of Wakeup

 Energy expended on wakeup, Ewake

 To sleep or not to sleep?

 Not to sleep (for time t):

Eno-sleep = (kv V 2f +R0) t

 To sleep (for time t) then wake up:

Esleep = Psleep t + Ewake

 To save energy by sleeping: Esleep < Eno-sleep

sleepv

wake

PRfVk

E
t

−+
>

0
2

Minimum sleep
interval



Dynamic Power Management

 DPM refers to turning devices off (or
putting them in deep sleep modes)

 Device wakeup has a cost that imposes a
minimum sleep interval (a breakeven time)

 DPM must maximize power savings due to
sleep while maintaining schedulability



DPM and the Problem with
Work-conserving Scheduling

 Example:

Task 1 (C=2, P=12)

Task 2 (C=1, P=16)



DPM and the Problem with
Work-conserving Scheduling

 Example:

Task 1 (C=2, P=12)

Task 2 (C=1, P=16)

Minimum sleep period



DPM and the Problem with
Work-conserving Scheduling

 Example:

Task 1 (C=2, P=12)

Task 2 (C=1, P=16)

Minimum sleep period



DPM and the Problem with
Work-conserving Scheduling

 No opportunity to sleep 

Task 1 (C=2, P=12)

Task 2 (C=1, P=16)

Minimum sleep period



DPM and the Problem with
Work-conserving Scheduling

 Must batch! ☺

Task 1 (C=2, P=12)

Task 2 (C=1, P=16)

Minimum sleep period



Task 1 (C=2, P=12)

Task 2 (C=1, P=16)

Minimum sleep period

A Schedulability Question:
How to Analyze Schedules with Sleep
Periods?



Task 1 (C=2, P=12)

Task 2 (C=1, P=16)

A Schedulability Question:
How to Analyze Schedules with Sleep
Periods?

 Option 1: Treat sleep periods like a periodic task. Use the Liu
and Layland utilization bound for schedulability. Problems?

Task 3 (C=11, P=16)



Task 1 (C=2, P=12)

Task 2 (C=1, P=16)

A Schedulability Question:
How to Analyze Schedules with Sleep
Periods?

 Option 1: Treat sleep periods like a periodic task. Use the Liu
and Layland utilization bound for schedulability. Problems?
 Does not work because the “sleep task” cannot be preempted, whereas

the rest of the tasks are preemptible. The utilization bound works only
for fully preemptive scheduling.

Task 3 (C=11, P=16)



Task 1 (C=2, P=12)

Task 2 (C=1, P=16)

A Schedulability Question:
How to Analyze Schedules with Sleep
Periods?

 Option 2: Treat sleep periods like the highest-priority periodic
task. Use the Liu and Layland utilization bound for
schedulability. Problems?

Task 3 (C=11, P=16)



Task 1 (C=2, P=12)

Task 2 (C=1, P=16)

A Schedulability Question:
How to Analyze Schedules with Sleep
Periods?

 Option 2: Treat sleep periods like the highest-priority periodic
task. Use the Liu and Layland utilization bound for
schedulability. Problems?
 Does not work because the “sleep task” may need to have a larger

period than the actual top-priority task, which contradicts rate-
monotonic scheduling. The bound does not work.

Task 3 (C=11, P=16)



Task 1 (C=2, P=12)

Task 2 (C=1, P=16)

A Schedulability Question:
How to Analyze Schedules with Sleep
Periods?

 Option 3: Treat sleep periods like the highest-priority periodic
task. Use exact response time analysis for schedulability.
Problems?

Task 3 (C=11, P=16)



Task 1 (C=2, P=12)

Task 2 (C=1, P=16)

Device Forbidden Regions

 Option 3: Treat sleep periods like the highest-priority periodic
task. Use exact response time analysis for schedulability.
Problems?
 A Valid solution, but pessimistic.

(Called: Device Forbidden Regions. Published in RTAS 2008.)

Task 3 (C=11, P=16)



Intel CPU Clock Speed

 Moore’s Law
(1980-2005)

 Question: Why
did the speed
curve saturate
(around 2005)?



Computational Power (per
Die)

 Note the
exponential rise
in power
consumption

 Question: how
come it does not
saturate?



Moore’s Law
Transistor count
doubles every two
years

Named after Intel co-
founder Gordon E. Moore,
who described the trend in
his 1965 paper



28

Single-core computer



29

Single-core CPU chip

the single core



30

Multi-core Architectures

 Replicate multiple processor cores on a
single die.

Core 1 Core 2 Core 3 Core 4

Multi-core CPU chip



31

Interaction with the
Operating System

 OS perceives each core as a separate processor

 OS scheduler maps threads/processes
to different cores

 Major OSes support multi-core today:
Windows, Linux, Mac OS X, …



DVS on Multiprocessors

 Consider a set of tasks, where task i has
period Pi and total number of cycles Ci

 Sort tasks from largest to smallest utilization Ci / Pi

 Assign tasks one at a time (largest-first) to the
least utilized processor

 Apply one of the previous algorithms on each
processor separately



Question

 From the perspective of minimizing energy,
is it always a good idea to use up all
processors?



How Many Processors to Use?

 Consider using one processor at frequency f
versus two at frequency f/2

 Case 1: Total power for one processor

 kf f 3+R0

 Case 2: Total power for two processors

 2 {kf (f /2)3 +R0} = kf f 3/ 4 + 2 R0



How Many Processors to Use?

 Consider using one processor at frequency f
versus two at frequency f/2

 Case 1: Total power for one processor

 kf f 3+R0

 Case 2: Total power for two processors

 2 {kf (f /2)3 +R0} = kf f 3/ 4 + 2 R0

 The general case: n processors

 n {kf (f /n)3 +R0} = kf f 3/ n 2 + n R0



How Many Processors to Use?

 The general case: n processors

 Power = n {kf (f /n)3 +R0} = kf f 3/ n 2 + n R0

 dPower/dn = -2 kf f 3/ n 3 + R0 = 0

3

0

32

R

fk
n

f
=



How Many Processors to Use?

 The general case: n processors

 Power = n {kf (f /n)3 +R0} = kf f 3/ n 2 + n R0

 dPower/dn = -2 kf f 3/ n 3 + R0 = 0

 What if n is not an integer?

3

0

32

R

fk
n

f
=


