
Exact Schedulability Test

Tarek Abdelzaher

The 4th Credit Project
(Suggested: 1-2 persons per project)

 Option 1: Develop a 30 min survey presentation on an advanced topic of your
choice in real-time and embedded computing.

 Topic name due 10/24.

 Slides due 11/28.

 Presentation the week of 12/5

 Example topics:

 Self-driving cars: the state of the art and future challenges

 Real-time operating systems

 Multicore scheduling – main challenges and results

 Space applications

 Scheduling Map/Reduce workflows (with emphasis on time support)

 Participatory and social sensing (crowd-sensing)

 Software model checking (proving software correctness)

 Energy/smart grid

 Option 2: Implement a real-time or embedded systems service
 Service name due 10/24.

 Slides due 11/28.

 Presentation + Demo the week of 11/29

 Example services:
 A real-time scheduler for Roomba

 Security and diagnostics

 Real-time Hadoop

 Social sensing services

 Your idea here…

The 4th Credit Project
(Suggested: 1-2 persons per project)

Scheduling Taxonomy

Periodic Task Scheduling

Rate Monotonic EDF

With
Deadline < Period

Deadline Monotonic Scheduling

 Consider a set of periodic tasks where each
task, i, has a computation time, Ci, a period, Pi,
and a relative deadline Di < Pi.

Pi

Di

Deadline Monotonic Scheduling

 Consider a set of periodic tasks where each
task, i, has a computation time, Ci, a period, Pi,
and a relative deadline Di < Pi.

 What is the schedulability condition?
Pi

Di

Deadline Monotonic Scheduling

 Consider a set of periodic tasks where each
task, i, has a computation time, Ci, a period, Pi,
and a relative deadline Di < Pi.

 Schedulability can’t be worse than if Pi was
reduced to Di. Thus:

()∑ −≤
i

n

i

i n
D

C
12 /1

Pi

Di

Deadline Monotonic Scheduling

 Consider a set of periodic tasks where each
task, i, has a computation time, Ci, a period, Pi,
and a relative deadline Di < Pi.

 Schedulability can’t be worse than if Pi was
reduced to Di. Thus:

()∑ −≤
i

n

i

i n
D

C
12 /1

Pi

Di

A Better Condition

 Worst case interference from a higher priority
task, j ?

Pi

Di

Pj
Cj

A Better Condition

 Worst case interference from a higher priority
task, j ?

Pi

Di

Pj
Cj

j

j

i C
P

D













A Better Condition

 Worst case interference from a higher priority
task, j ?

 Schedulability condition:

Pj
Cj

j

j

i C
P

D













i
j

j

j

i
i DC

P

D
C ≤












+∑

Pi

Di

A Better Condition

 Worst case interference from a higher priority
task, j ?

 Schedulability condition:

Pj
Cj

j

j

i C
P

D













i
j

j

j

i
i DC

P

D
C ≤












+∑

Pi

Di

A Better Condition

 Worst case interference from a higher priority
task, j ?

 Schedulability condition:

Pj
Cj

j

j

i C
P

D













i
j

j

j

i
i DC

P

D
C ≤












+∑

Pi

Di

An Exact Condition
 Note: Interference exists only during the

response time Ri not the entire Di
Pj

Cj

Pi

Di

Ri

j

j

i

j

C
P

D
I












=∑

Ri

An Exact Condition
 Note: Interference exists only during the

response time Ri not the entire Di
Pj

Cj

Pi

Di

Ri

j

j

i

j

C
P

D
I












=∑

where

ii CIR +=

Ri

An Exact Condition
 Note: Interference exists only during the

response time Ri not the entire Di
Pj

Cj

Pi

Di

Ri

j

j

i

j

C
P

D
I












=∑

Ri

where

ii CIR +=

Solve iteratively for the smallest Ri that satisfies both equations

Example

Pj
Cj

Pi

Di

RiConsider a system of two tasks:

Task 1: P1=1.7, D1=0.5, C1=0.5
Task 2: P2=8, D2=3.2, C2=2

ii

j

j

i

j

CIR

C
P

R
I

+=












=∑

Example

Pj
Cj

Pi

Di

RiConsider a system of two tasks:

Task 1: P1=1.7, D1=0.5, C1=0.5
Task 2: P2=8, D2=3.2, C2=2

15.0
7.1

3

3

15.0
7.1

5.2

5.2

5.0

1

1

)1(
2)2(

2
)1()1(

2

1

1

)0(
2)1(

2
)0()0(

2

1
)0(

=





=








=

=+=

=





=








=

=+=

==

C
P

R
I

CIR

C
P

R
I

CIR

CI

ii

j

j

i

j

CIR

C
P

R
I

+=












=∑

Example

Pj
Cj

Pi

Di

RiConsider a system of two tasks:

Task 1: P1=1.7, D1=0.5, C1=0.5
Task 2: P2=8, D2=3.2, C2=2

15.0
7.1

3

3

15.0
7.1

5.2

5.2

5.0

1

1

)1(
2)2(

2
)1()1(

2

1

1

)0(
2)1(

2
)0()0(

2

1
)0(

=





=








=

=+=

=





=








=

=+=

==

C
P

R
I

CIR

C
P

R
I

CIR

CI

ii

j

j

i

j

CIR

C
P

R
I

+=












=∑

Example

Pj
Cj

Pi

Di

RiConsider a system of two tasks:

Task 1: P1=1.7, D1=0.5, C1=0.5
Task 2: P2=8, D2=3.2, C2=2

3

15.0
7.1

3

3

15.0
7.1

5.2

5.2

5.0

2
)2()2(

2

1

1

)1(
2)2(

2
)1()1(

2

1

1

)0(
2)1(

2
)0()0(

2

1
)0(

=+=

=







=








=

=+=

=





=








=

=+=

==

CIR

C
P

R
I

CIR

C
P

R
I

CIR

CI

ii

j

j

i

j

CIR

C
P

R
I

+=












=∑

Example

Pj
Cj

Pi

Di

RiConsider a system of two tasks:

Task 1: P1=1.7, D1=0.5, C1=0.5
Task 2: P2=8, D2=3.2, C2=2

3

15.0
7.1

3

3

15.0
7.1

5.2

5.2

5.0

2
)2()2(

2

1

1

)1(
2)2(

2
)1()1(

2

1

1

)0(
2)1(

2
)0()0(

2

1
)0(

=+=

=







=








=

=+=

=





=








=

=+=

==

CIR

C
P

R
I

CIR

C
P

R
I

CIR

CI

ii

j

j

i

j

CIR

C
P

R
I

+=












=∑

3 < 3.2 Ok!

Mixed Periodic and Aperiodic
Task Systems

 Question: how to execute aperiodic tasks
without violating schedulability guarantees
given to periodic tasks?

Mixed Periodic and Aperiodic
Task Systems

 Question: how to execute aperiodic tasks
without violating schedulability guarantees
given to periodic tasks?

 One Answer: Execute aperiodic tasks at lowest
priority

 Problem: Poor performance for aperiodic tasks

Mixed Periodic and Aperiodic
Task Systems

 Idea: aperiodic tasks can be served by periodically invoked
servers

 The server can be accounted for in periodic task schedulability
analysis

 The server has a period Ps and a budget Bs

 Server can serve aperiodic tasks until budget expires
 Servers have different flavors depending on the details of when

they are invoked, what priority they have, and how budgets are
replenished

Server

Period, Ps

Budget, Bs

Mixed Periodic and Aperiodic
Task Systems

 Idea: aperiodic tasks can be served by periodically invoked
servers

 The server can be accounted for in periodic task schedulability
analysis

 The server has a period Ps and a budget Bs

 Server can serve aperiodic tasks until budget expires
 Servers have different flavors depending on the details of when

they are invoked, what priority they have, and how budgets are
replenished

Server

Aperiodic Tasks

Mixed Periodic and Aperiodic
Task Systems

 Idea: aperiodic tasks can be served by periodically invoked
servers

 The server can be accounted for in periodic task schedulability
analysis

 The server has a period Ps and a budget Bs

 Server can serve aperiodic tasks until budget expires
 Servers have different flavors depending on the details of when

they are invoked, what priority they have, and how budgets are
replenished

Aperiodic Tasks

Server

Polling Server

 Runs as a periodic task (priority set according to RM)

 Aperiodic arrivals are queued until the server task is
invoked

 When the server is invoked it serves the queue until it
is empty or until the budget expires then suspends
itself
 If the queue is empty when the server is invoked it suspends

itself immediately.

 Server is treated as a regular periodic task in
schedulability analysis

Example of a Polling Server

 Polling server:
 Period Ps = 5
 Budget Bs = 2

 Periodic task
 P = 4
 C = 1.5

 All aperiodic arrivals have C=1

Aperiodic arrivals

Example of a Polling Server

 Polling server:
 Period Ps = 5
 Budget Bs = 2

 Periodic task
 P = 4
 C = 1.5

 All aperiodic arrivals have C=1

Aperiodic arrivals

Example of a Polling Server

 Polling server:
 Period Ps = 5
 Budget Bs = 2

 Periodic task
 P = 4
 C = 1.5

 All aperiodic arrivals have C=1

Aperiodic arrivals

Budget

Example of a Polling Server

 Polling server:
 Period Ps = 5
 Budget Bs = 2

 Periodic task
 P = 4
 C = 1.5

 All aperiodic arrivals have C=1

Aperiodic arrivals

Budget

Why not execute immediately?

1 2 3 4

Deferrable Server

 Keeps the balance of the budget until the end of
the period

 Example (continued)

Aperiodic arrivals

Budget Polling
Server

Deferrable
Server

Worst-Case Scenario

C1
P1

P2

Task 1

Task 2 C2

C1
P1

P2

Task 1

Task 2 C2

Deferred
Previous
Invocation










+

+
≤

12

2
ln

s

s
p

U

U
U

Exercise: Derive the utilization bound for a deferrable server plus one periodic task

Worst-Case Scenario

C1
P1

P2

Task 1

Task 2 C2

C1
P1

P2

Task 1

Task 2 C2

Deferred
Previous
Invocation










+

+
≤

12

2
ln

s

s
p

U

U
U

Exercise: Derive the utilization bound for a deferrable server plus one periodic task

0.186

0.652

0.69

1.0

1.0

Us

U

Priority Exchange Server

 Like the deferrable server, it keeps the budget
until the end of server period

 Unlike the deferrable server the priority slips
over time: When not used the priority is
exchanged for that of the executing periodic
task

Priority Exchange Server

Aperiodic tasks

Priority Exchange
Server

Periodic
Tasks

Example

Priority Exchange Server

Aperiodic tasks

Priority Exchange
Server

Periodic
Tasks

Example










+
≤

1

2
ln

s

p
U

U

0.186

0.652

0.69

1.0

1.0

Us

U

Priority Exchange

Defer.

Sporadic Server

 Server is said to be active if it is in the running or ready
queue, otherwise it is idle.

 When an aperiodic task comes and the budget is not
zero, the server becomes active

 Every time the server becomes active, say at tA, it sets
replenishment time one period into the future, tA + Ps
(but does not decide on replenishment amount).

 When the server becomes idle, say at tI , set
replenishment amount to capacity consumed in [tA, tI]










+
≤

1

2
ln

s

p
U

U

Slack Stealing Server

 Compute a slack function A(ts, tf) that says how
much total slack is available

 Admit aperiodic tasks while slack is not
exceeded

Putting It All Together

 Covered so far:

 System reliability

 Data reliability

 Timeliness

 Design problem: Design a “safe” robot

Putting It All Together

 Covered so far:

 System reliability

 Data reliability

 Timeliness

 Design problem: Design a “safe” robot

