Data Reliability

Interpreting Sensor Data

Review of Important
 Theorems

- Total Probability Theorem:
$P(A)=P\left(A \mid C_{1}\right) P\left(C_{1}\right)+\ldots+P\left(A \mid C_{n}\right) P\left(C_{n}\right)$
where C_{1}, \ldots, C_{n} cover the space of all possibilities
- Bayes Theorem:

$$
P(A \mid B)=P(B \mid A) \cdot P(A) / P(B)
$$

- Other: $P(A, B)=P(A \mid B) P(B)$

Intrusion Detection, Again

- A motion alarm is used to detect unauthorized access to a warehouse after hours. The motion sensor is mounted near the only entrance to the warehouse. If a burglar enters the building, there is a 99% chance that the burglar triggers the motion alarm.
- At 9pm, on September 16 ${ }^{\text {th }}, 2013$, the alarm was set off. What are the odds that a burglar is in the building?

Intrusion Detection, Again

- A motion alarm is used to detect unauthorized access to a warehouse after hours. The motion sensor is mounted near the only entrance to the warehouse. If a burglar enters the building, there is a 99% chance that the burglar triggers the motion alarm.
- At 9pm, on September 16 ${ }^{\text {th }}, 2013$, the alarm was set off. What are the odds that a burglar is in the building?
- Assume the alarm goes off about 3 days a year and burglaries happen about once a year

Intrusion Detection, Again

A Second Sensor

- In the intrusion detection example, assume that there is a vibration sensor on the floor that detects footsteps. If a burglar enters the building, there is a 90% chance that the vibration sensor will fire. If the vibration sensor fires, what are the odds that there is a burglar? Assume that the vibration sensor fires 10 times a year

A Second Sensor

Two Sensor Example

- In the intrusion detection example, what are the odds of burglary if both sensors fire?
- $P($ Burg $\mid A, V i b)=$?

Remember: If burglar enters, motion alarm fires 99% of the time and vibration alarm fires 90% of the time. Burglaries occur once a year, motion alarm fires 3 times a year, and vibration alarm fires 10 times a year.

Two Sensor Example

- In the intrusion detection example, what are the odds of burglary if both sensors fire?
- $P($ Burg $\mid A, ~ V i b)=$?
- $P(B \mid A, V)=P(A, V \mid B) P(B) / P(A, V)$

Remember: If burglar enters, motion alarm fires 99% of the time and vibration alarm fires 90% of the time. Burglaries occur once a year, motion alarm fires 3 times a year, and vibration alarm fires 10 times a year.

Remember: If burglar enters, motion alarm fires 99% of the time and vibration alarm fires 90% of the time. Burglaries occur once a year, motion alarm fires 3 times a year, and vibration alarm fires 10 times a year.

Two Sensor Example

- In the intrusion detection example, what are the odds of burglary if both sensors fire?
- $P($ Burg $\mid A, ~ V i b)=$?
- $P(B \mid A, V)=P(A, V \mid B) P(B) / P(A, V)$

Now what?
Is it OK to say $P(A, V \mid B)=P(A \mid B) P(V \mid B)$?
Is it OK to say $\mathrm{P}(\mathrm{A}, \mathrm{V})=\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{V})$?

Independence versus Conditional Independence

- John and Sally follow Mike on Twitter.
- When Mike tweets something, John retweets it with a 50% probability. Sally retweets it with a 30% probability.
- Are John's and Sally's tweets independent?

Independence versus Conditional Independence

- John and Sally follow Mike on Twitter.
- When Mike tweets something, John retweets it with a 50% probability. Sally retweets it with a 30% probability.
- Are John's and Sally's tweets independent?
- No. However, given that Mike says something, their decisions to re-tweet it are independent (conditional independence)

Remember: If burglar enters, motion alarm fires 99% of the time and vibration alarm fires 90% of the time. Burglaries occur once a year, motion alarm fires 3 times a year, and vibration alarm fires 10 times a year.

Two Sensor Example

- In the intrusion detection example, what are the odds of burglary if both sensors fire?
- $P($ Burg $\mid A, ~ V i b)=$?
- $P(B \mid A, V)=P(A, V \mid B) P(B) / P(A, V)$

Now what?
OK to say $P(A, V \mid B)=P(A \mid B) P(V \mid B)$
$P(A, V)=P(A) P(V)$?

Remember: If burglar enters, motion alarm fires 99% of the time and vibration alarm fires 90% of the time. Burglaries occur once a year, motion alarm fires 3 times a year, and vibration alarm fires 10 times a year.

Two Sensor Example

- In the intrusion detection example, what are the odds of burglary if both sensors fire?
- $P($ Burg $\mid A, ~ V i b)=$?
- $P(B \mid A, V)=P(A, V \mid B) P(B) / P(A, V)$ where $P(A, V)=P(A, V \mid B) P(B)+P(A, V \mid \bar{B}) P(\bar{B})$ and $P(A, V \mid B)=P(A \mid B) P(V \mid B)$

Remember: If burglar enters, motion alarm fires 99% of the time and vibration alarm fires 90% of the time. Burglaries occur once a year, motion alarm fires 3 times a year, and vibration alarm fires 10 times a year.

Two Sensor Example

- In the intrusion detection example, what are the odds of burglary if both sensors fire?
- $P($ Burg $\mid A, ~ V i b)=$?
- $P(B \mid A, V)=P(A, V \mid B) P(B) / P(A, V)$ where $P(A, V)=P(A, V \mid B) P(B)+P(A, V \mid \bar{B}) P(\bar{B})$ and $P(A, V \mid B)=P(A \mid B) P(V \mid B)$

$$
\mathrm{P}(\mathrm{~A}, \mathrm{~V} \mid \overline{\mathrm{B}})=\mathrm{P}(\mathrm{~A} \mid \overline{\mathrm{B}}) \mathrm{P}(\mathrm{~V} \mid \overline{\mathrm{B}})
$$

Remember: If burglar enters, motion alarm fires 99% of the time and vibration alarm fires 90% of the time. Burglaries occur once a year, motion alarm fires 3 times a year, and vibration alarm fires 10 times a year.

Two Sensor Example

A Robotic Design Example

- A robot has a camera that detects obstacles with probability 70%, a bump sensor that detects imminent collisions with a probability of 99.9\% (when an obstacle is 1 inch away), and a cliff sensor that detects imminent falls off a cliff with a probability of 99.9% (when the cliff is 1 inch away). The robot has breaks that can stop it within 0.1 second. The mission is to deliver supplies from point A to point B, safely.
- What are safety-critical requirements?
- What are mission-critical (i.e., performance) requirements?
- What is a safe state?
- How to ensure well-formed dependencies?
- What is a safe speed for the robot?
- Is the algorithm that computes speed based on preferred arrival time and route safety-critical or mission-critical?

A Robotic Design Example

- Notes:

