Real-time Synchronization

!'_ (Semaphores, Resources and Blocking)

Priority Inheritance
Priority Ceiling
Slack Resource Policy

‘L Reminder

= MP1 due soon.

Announcements

Wanted!!

= Undergraduates for R&D
positions

= Masters/MCS: Full RAships

= Professional (when you
graduate): Up to

NNNNNNNNNNNN

=

...... 2 NEWS AT NINE

1A 3 dwmevs o TS

A NTERNET OF BATTLEFIELD T
[DANVILLE |

— IND LAS VEGAS 3
HELP FROM PUBLIC TO DETERMINE MOTIVE BEHIRD S0 CC_R5:55 1 Ge

NDATE @3 POLICE FBI ASK FOR
i

i The Problem

= [asks have synchronization constraints
= Semaphores protect critical sections

= Blocking can cause a higher-priority task to wait on
a lower-priority one to unlock a resource

= Problem: In all previous derivations we assumed that a
task can only wait for higher-priority tasks not lower-
priority tasks

= Question

= What is the maximum amount of time a higher-priority
task can wait for a lower-priority task?

= How to account for that time in schedulability analysis?

i Mutual Exclusion Constraints

= Tasks that lock/unlock the same semaphore are
said to have a mutual exclusion constraint

Lock S Unlock S

N/

Task 1 [T

\/ Critical sections

/ (Mutually exclusive)
Task 2 I R

N

Lock S

Unlock S

i Priority Inversion

= Locks and priorities may be at odds.
Locking results in priority inversion

High-priority task

Preempt.

Lock S

Low-priority task \‘

i Priority Inversion

= Locks and priorities may be at odds.
Locking results in priority inversion

High-priority task

Attempt to lock S
— results in blocking

Low-priority task

Preempt.

Priority
Lock S Inversion

\

!

‘L Priority Inversion
= How to account for priority inversion?

Attempt to lock S

High-priority task — results in blocking

1 T]
I I T~ Unlock S
Preempt. Lock S
Priority
Lock S Inversign
\ Unlock S
Low-priority task v /

B e

i Unbounded Priority Inversion

= Consider the case below: a series of
intermediate priority tasks is delaying a

higher-priority one Attempt to lock S
High-priority task — results in blocking

Preempt. Unbounded Priority Inversion
Intermediate-priority tasks
Lock
ock S Preempt.
Low-priority task \‘

!

‘L Unbounded Priority Inversion

= How to prevent unbounded priority

inversion?

Attempt to lock S

High-priority task — results in blocking

[
Preempt. Unbounded Priority Inversion
Intermediate-priority tasks I
Lock S Preempt.
Low-priority task *

!

‘L Priority Inheritance Protocol

= Let a task inherit the priority of any higher-
priority task it is blocking

Attempt to lock S

High-priority task — results in blocking

A CAAARARAAA Unlock S
Preempt. N\
reempt Lock?‘\
Intermediate-priority tasks [e [
Lock S
\ / Unlock S
Low-priority task v

B e

i Priority Inheritance Protocol

= Question: What is the longest time a task
can wait for lower-priority tasks?

_et there be N tasks and M semaphores

_et the largest critical section of task i be of
ength B;

s Answer: ?

Computing the Maximum
‘L Priority Inversion Time

= Consider the instant when a high-priority task
that arrives.

= What is the most it can wait for lower priority ones?

If I am a task, priority

inversion occurs when

(a) Lower priority task holds a
resource I need (direct blocking)
(b) Lower priority task inherits a
higher priority than me because
it holds a resource the higher-
priority task needs (push-through
blocking)

i Maximum Blocking Time

= If all critical sections are equal (of length B):
= Blocking time = B min (N, M)
(Why?)
= If they are not equal?

i Maximum Blocking Time

= If all critical sections are equal (of length B):
= Blocking time = B min (N, M)
(Why?)
= If they are not equal

= Find the worst (maximum length) critical section
for each resource

= Add up the top min (N, M) sections in size

= The total priority inversion time for task i is
called B,

‘L Schedulability Test

VI,1<1<n,
B, i Co . nui
—+ >y £<1(27 -1

P kZ:;‘Pk

i Schedulability Test

V1,1<1<n,
E+Z&§i(21“—1)
P ‘S P

Why do we have to test each task separately? Why not just one
utilization-based test like it used to?

i Problem: Deadlock

Deadlock occurs if two tasks locked two semaphores in
opposite order
Lock R2

Try R1, Block
—

. —

Preemption

/ AN

Lock R1 Try R2, Deadlock

i Priority Ceiling Protocol

= Definition: The priority ceiling of a semaphore is
the highest priority of any task that can lock it

= A task that requests a lock R, is denied if its
priority is not higher than the highest priority
ceiling of all currently locked semaphores (say it
belongs to semaphore R)
= The task is said to be blocked by the task holding lock

Rh

= A task inherits the priority of the top higher-

priority task it is blocking

i Problem: Deadlock?

Deadlock used to occur if two tasks locked two semaphores in
opposite order. Can it still occur in priority ceiling?
Lock R2

Try R1, Block
/

. —

Preemption

/ AN

Lock R1 Try R2, Deadlock

i Problem: Deadlock?

Deadlock used to occur if two tasks locked two semaphores in
opposite order. Can it still occur in priority ceiling?

Lock R2: Denied because its priority
is not higher than ceiling of R1

\

Preemption Inherit higrlje(priority
4 N
Lock R1 Lock R2 [Unlock R1

Unlock R2

Priority Inheritance Protocol:
‘L Maximum Blocking Time

Need Red
Need Blue
/ Need Yellow

T

- L

Priority Ceiling Protocol:
‘L Maximum Blocking Time

Need Blue but
Priority is lower

Need Red but
Priority is lower
Need but Than Red ceiling
Priority is lower

Than Red ceiling

Than Red ceiling \
\ A -_L

\

iy L

i Schedulability

= A task can be preempted by only one critical
section of a lower priority task (that is guarded
by a semaphore of equal or higher priority
ceiling). Let max length of such section be B,

V1,1<1<n,
E+Z&Si(21“—1)
P =P

i Slack Resource Policy

= Priority:
= Any static or dynamic policy (e.g., EDF, RM, ...)
= Preemption Level

= Any fixed value that satisfies: If A arrives after B and Priority (A) >
Priority (B) then PreemptionLevel (A) > PreemptionLevel (B)

= Resource Ceiling

= Highest preemption level of all tasks that might access the resource
= System Ceiling

= Highest resource ceiling of all currently locked resources
= A task can preempt another if:

= It has the highest priority
= Its preemption level is higher than the system ceiling

i Example: EDF

= Priority is proportional to the absolute deadline

= Preemption level is proportional to the relative
deadline (shoter = higher priority).
= Observe that:

= If A arrives after B and Priority (A) > Priority (B) then
PreemptionLevel (A) > PreemptionLevel (B)

; |

‘L Maximum Blocking Time

Need Blue but Priority Ceiling Protocol
Priority is lower
Need Red but

Than Red ceiling D
Priority is lower

Need but Than Red ceiling
Priority is lower

Than Red ce|I|ng
A -_L

\

iy L

i Maximum Blocking Time

Can't preempt Slack Resource Policy

Preemption level is not
higher than ceiling

\ N
\

