
Real-time Synchronization
(Semaphores, Resources and Blocking)

Priority Inheritance

Priority Ceiling

Slack Resource Policy

Reminder

 MP1 due soon.

Announcements
R&D

Wanted!!
 Undergraduates for R&D

positions

 Masters/MCS: Full RAships

 Professional (when you
graduate): Up to

$75K/yr

The Problem

 Tasks have synchronization constraints
 Semaphores protect critical sections

 Blocking can cause a higher-priority task to wait on
a lower-priority one to unlock a resource
 Problem: In all previous derivations we assumed that a

task can only wait for higher-priority tasks not lower-
priority tasks

 Question
 What is the maximum amount of time a higher-priority

task can wait for a lower-priority task?

 How to account for that time in schedulability analysis?

Mutual Exclusion Constraints

 Tasks that lock/unlock the same semaphore are
said to have a mutual exclusion constraint

Lock S Unlock S

Lock S
Unlock S

Critical sections
(Mutually exclusive)

Task 1

Task 2

Priority Inversion

 Locks and priorities may be at odds.
Locking results in priority inversion

High-priority task

Low-priority task

Lock S

Preempt.

Priority Inversion

 Locks and priorities may be at odds.
Locking results in priority inversion

High-priority task

Low-priority task

Lock S

Attempt to lock S
results in blocking

Preempt.

Priority
Inversion

Priority Inversion

 How to account for priority inversion?

High-priority task

Low-priority task

Lock S

Attempt to lock S
results in blocking

Preempt.

Unlock S

Lock S
Unlock S

Priority
Inversion

Unbounded Priority Inversion

 Consider the case below: a series of
intermediate priority tasks is delaying a
higher-priority one

High-priority task

Low-priority task

Lock S

Preempt.

Intermediate-priority tasks

Preempt.

…

Unbounded Priority Inversion

Attempt to lock S
results in blocking

Unbounded Priority Inversion

 How to prevent unbounded priority
inversion?

High-priority task

Low-priority task

Lock S

Preempt.

Intermediate-priority tasks

Preempt.

…

Unbounded Priority Inversion

Attempt to lock S
results in blocking

Priority Inheritance Protocol

 Let a task inherit the priority of any higher-
priority task it is blocking

High-priority task

Low-priority task

Lock S

Preempt.

Intermediate-priority tasks …

Attempt to lock S
results in blocking

Lock S
Unlock S

Unlock S

Priority Inheritance Protocol

 Question: What is the longest time a task
can wait for lower-priority tasks?

 Let there be N tasks and M semaphores

 Let the largest critical section of task i be of
length Bi

 Answer: ?

Computing the Maximum
Priority Inversion Time

 Consider the instant when a high-priority task
that arrives.
 What is the most it can wait for lower priority ones?

Semaphore Queue
Resource

1

Semaphore Queue
Resource

2

Semaphore Queue
Resource

M

If I am a task, priority
inversion occurs when
(a) Lower priority task holds a
resource I need (direct blocking)
(b) Lower priority task inherits a
higher priority than me because
it holds a resource the higher-
priority task needs (push-through
blocking)

Maximum Blocking Time

 If all critical sections are equal (of length B):

 Blocking time = B min (N, M)

(Why?)

 If they are not equal?

Maximum Blocking Time

 If all critical sections are equal (of length B):

 Blocking time = B min (N, M)

(Why?)

 If they are not equal

 Find the worst (maximum length) critical section
for each resource

 Add up the top min (N, M) sections in size

 The total priority inversion time for task i is
called Bi

Schedulability Test

)12(

,1,

/1

1

−≤+

≤≤∀

∑
=

i
i

k k

k

i

i i
P

C

P

B

nii

Schedulability Test

)12(

,1,

/1

1

−≤+

≤≤∀

∑
=

i
i

k k

k

i

i i
P

C

P

B

nii

Why do we have to test each task separately? Why not just one
utilization-based test like it used to?

Problem: Deadlock

Lock R1

Lock R2

Try R1, Block

Try R2, Deadlock

Preemption

Deadlock occurs if two tasks locked two semaphores in
opposite order

Priority Ceiling Protocol

 Definition: The priority ceiling of a semaphore is
the highest priority of any task that can lock it

 A task that requests a lock Rk is denied if its
priority is not higher than the highest priority
ceiling of all currently locked semaphores (say it
belongs to semaphore Rh)

 The task is said to be blocked by the task holding lock
Rh

 A task inherits the priority of the top higher-
priority task it is blocking

Problem: Deadlock?

Lock R1

Lock R2

Try R1, Block

Try R2, Deadlock

Preemption

Deadlock used to occur if two tasks locked two semaphores in
opposite order. Can it still occur in priority ceiling?

Problem: Deadlock?

Lock R1

Lock R2: Denied because its priority
is not higher than ceiling of R1

Lock R2

Preemption

Deadlock used to occur if two tasks locked two semaphores in
opposite order. Can it still occur in priority ceiling?

Unlock R1

Unlock R2

Inherit higher priority

Priority Inheritance Protocol:
Maximum Blocking Time

Need Red
Need Blue

Need Yellow

Priority Ceiling Protocol:
Maximum Blocking Time

Need Yellow but
Priority is lower
Than Red ceiling

Need Blue but
Priority is lower
Than Red ceiling Need Red but

Priority is lower
Than Red ceiling

Done

Schedulability

 A task can be preempted by only one critical
section of a lower priority task (that is guarded
by a semaphore of equal or higher priority
ceiling). Let max length of such section be Bi

)12(

,1,

/1

1

−≤+

≤≤∀

∑
=

i
i

k k

k

i

i i
P

C

P

B

nii

Slack Resource Policy

 Priority:
 Any static or dynamic policy (e.g., EDF, RM, …)

 Preemption Level
 Any fixed value that satisfies: If A arrives after B and Priority (A) >

Priority (B) then PreemptionLevel (A) > PreemptionLevel (B)

 Resource Ceiling
 Highest preemption level of all tasks that might access the resource

 System Ceiling
 Highest resource ceiling of all currently locked resources

 A task can preempt another if:
 It has the highest priority

 Its preemption level is higher than the system ceiling

Example: EDF

 Priority is proportional to the absolute deadline

 Preemption level is proportional to the relative
deadline (shoter higher priority).

 Observe that:

 If A arrives after B and Priority (A) > Priority (B) then
PreemptionLevel (A) > PreemptionLevel (B)

B

A

Maximum Blocking Time

Priority Ceiling Protocol

Need Yellow but
Priority is lower
Than Red ceiling

Need Blue but
Priority is lower
Than Red ceiling Need Red but

Priority is lower
Than Red ceiling

Done

Maximum Blocking Time

Slack Resource PolicyCan’t preempt
Preemption level is not
higher than ceiling

