Memory Hierarchy

CS 423 - The University of lllinois

Wade Fagen-Ulmschneider



Memory Hierarchy:

Low Capacity/x

High Capacity

High Cost /MB
High Performance

Low Cost /MB
Lower Performance




Memory Hierarchy:

Low Capacity/x

High Capacity

Registers

CPU Caches

RAM

Storage
(SSD, HDD, Network, etc)

Low Capacity
High Cost /MB

High Performance

Low Cost /MB
Lower Performance




Memory Considerations

% We have a limited amount of fast resources.

% We have an abundance of slow resources.

Y How do we create an allusion of an abundance of fast resources?






Memory Overlays

CS 423 - The University of lllinois

Wade Fagen-Ulmschneider



Overlays

*

Memory overlays are
fixed-sized segments of data
used when a program exceeds
the available memory.

Simple, minimal complexity;
Implemented at compile-time.

Still used in embedded systems.

Physical Memory Pages:

[e]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]




Overlays

*

Memory overlays are
fixed-sized segments of data
used when a program exceeds
the available memory.

Simple, minimal complexity;
Implemented at compile-time.

Still used in embedded systems.

Physical Memory Pages:

[e]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]

Main Program

Overlay Manager

Overlay Region




Overlays

Program’s Overlays:
(Stored in secondary storage)

Overlay A

Physical Memory Pages:

[e]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]

Main Program

Overlay Manager

Overlay Region




Overlays

Program’s Overlays:
(Stored in secondary storage)

Overlay A

—>

Physical Memory Pages:

[e]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]

Main Program

Overlay Manager

Overlay A




Overlays

% Systems may have multiple overlays and overlays are loaded in
before they're required by the program code.
o All modern compilers/linkers support overlays.

o Compiled code target a specific overlay (ex: 2 x64 KB overlays).

* Disadvantages:
o Fixed size segments (ex: 64 KB),
o Platform-specific (must compile for different segment sizes),
o Raw access to RAM; [imited process isolation.






Fixed Partitions

CS 423 - The University of lllinois

Wade Fagen-Ulmschneider



Fixed Partitions

Physical Memory Pages:

% Fixed Partitions allocate a fixed [0]

amount of physical RAM to [1]

[2]

every process in a fixed location. [3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]




Fixed Partitions

* Fixed Partitions allocate a fixed
amount of physical RAM to

every process in a fixed location.

% On creation, each process
declares the maximum
memory space it may need.

o OS allocates a sequential
amount of space for the
process.

Physical Memory Pages:

[e]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]

Program A

Program B

Program C




Fixed Partitions

* Atany momentintime, a
program may use only a part of
Its partition.

Physical Memory Pages:

[e]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]

Program A

Unused Space

Program B

Unused Space

Program C

Unused Space




Fixed Partitions

* Atany momentintime, a
program may use only a part of
Its partition.

* The unused space is internal
fragmentation -- OS allocated
the space, but process does not
utilize it fully.

Physical Memory Pages:

[e]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]

Program A

Unused Space

Program B

Unused Space

Program C

Unused Space




Fixed Partitions

* Additionally, the RAM will
become fragmented with
various sized holes as processes
enter/exit.

o Some processes creation
may be blocked until a
partition is available.

% Raw access to RAM: [imited
process isolation.

Physical Memory Pages:

[e]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]

Program A

Program E

Program C







Relocation and Variable
Partitions

CS 423 - The University of lllinois

Wade Fagen-Ulmschneider



Relocation

Physical Memory Pages:

* Reallocation provides a [0]
translation from a “offset {;}
(logical) address” to the physical {3}

4

address through the (5]
reallocation register. {g}
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]




Relocation

* All programs will address their
memory from 0x0 = Ox{MAX].

* The “offset” or “logical” address
would be translated into the
physical address by relocating
the request:

Ox 3ac_ = . Ox3c3asac
+Relocation

Register

Physical Memory Pages:

[e]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]

Program A




Relocation

*

By changing the value of the
relocation register, each process
can now be moved around
within RAM.

Physical Memory Pages:

[e]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]

Program A
(Ex: Relocation: +0x3000)

AN

—Z

Program A
(Ex: Relocation: +0xb000)




Relocation

% First system with a “translation” between a “logical address” and
the “physical address” in RAM.
o Disadvantage: Still requires sequential memory to be
committed.

* Overhead: Single offset is needed to translate the page; the offset
can be adjusted by the OS as needed. (Low overhead!)






Paging and Virtual
Memory

CS 423 - The University of lllinois

Wade Fagen-Ulmschneider



Paging

Physical Memory Pages:

* Paging is an extension of [0]

segmentation, where we divide {;}

all data on our system into {3}
4

fixed-sized pages. [5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]




Paging

*

Paging is an extension of
segmentation, where we divide
all data on our system into
fixed-sized pages.
o Small enough to have minimal
internal fragmentation.

o Large enough to have minimal
external fragmentation and
overhead.

Physical Memory Pages:

[e]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]




Paging

Physical Memory Pages:

% Linux: getconf PAGESIZE [0]
o Reports the size of the page on {;}

a system. [3]

o Most systems use 2'%, or 4096 B {2}
Jpage. o)

m /'vestarted to see 2'° (64 KiB) [8]

used in the wild more and more. 9]

[10]

[11]

$ getconf PAGESIZE Hg}
4096 [14]

[15]




Page Tables

P1 Page Table:

[e]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[16]

[11]

[12]

[13]

[14]

[15]

RAM:

[e]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[16]

[11]

[12]

[13]

[14]

[15]

P2 Page Table:
[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

P3 Page Table:
[e]
[1]
[2]
[3]
[4]
[5]
[6]
[71]
[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]




Page Table

% Every process has its own page table.
o Page table provides a translation between a “virtual address”
used by the program and the “physical address” on RAM.

o No user process Wwill ever see the real physical address!



Page Tables

P1 Page Table: RAM: P2 Page Table: P3 Page Table:
[0] [0]
[1] [1]
[2] @[7]
[3] @[14]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]




Page Table

% Every “virtual address” now has two components:

o Page Offset: Where, within the page, is the data I'm
addressing?

o Page Number: What index is our page within our virtual page
table?



Page Table

* If our page is 2" bytes in size, the lowest 12 bits of a memory
address it the page offset.

* The remaining bits is the page number.



Page Table

* If our page is 2" bytes in size, the lowest 12 bits of a memory
address it the page offset.

* The remaining bits is the page number.

Memory Address: Ox 32ac 51c16

Page Number: 0x 32ac51
Page Offset: Ox c16 (lowest 12 bits)




Page Table
Memory Address: Ox 32ac 51c16

Page Number: O0x 32ac51
Page Offset: O0x c16 (lowest 12 bits)

% The page table entry at 0x32ac51 will provide the translation to
the physical address in RAM.



Page Tables

P1 Page Table: RAM: P2 Page Table: P3 Page Table:
[0] [0]
[1] [1]
[2] @[7]
[3] @[14]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]




Page Table

% Advantages:

O

Processes can have the allusion of sequential memory even
though the pages may be located in (translated to) various
locations throughout RAM.

Pages do not have to always be “present” in RAM; can point
to data on storage and load it in RAM when needed.
m Need a mechanism to load pages in when needed.

Processes have no direct access to RAM; allows OS to provide
protections to RAM.



Page Table

% Disadvantages:
o Overhead:
m Consider 4 GiB of RAM divided into 4 KiB pages:
4 GiB/ 4 KiB ==1MiB pages (!!)
..each process has its own 1 MiB pages!

o Complexity: Non-trivial to translate addresses.






Page Faults and Page
Evictions

CS 423 - The University of lllinois

Wade Fagen-Ulmschneider



Virtual Memory

RAM: Page Table: Disk Pages:
[0] C.
1: Load Program [1] PC1
[2] PC2
2: Run PC1 [3] PC3
- malloc 4 KB PC4
PC5
3: Run PC2: PC6
- malloc 10 KB img.png
- Open img.png img.png
- Read all of image img.png
4: Run PC3
- Access OG 4 KB
- Finish program




Virtual Memory Analysis

Disk Pages:

What is the range of possible file

PC1

sizes for img.png?

PC2

PC3

PC4

PC5

PC6

img.png

img.png

img.png




Virtual Memory Analysis

) ) ] Disk Pages:

What is the range of possible file
. (11 7 PCT
sizes for ./programCode (“PC")? PC2
PC3
PC4
PC5
PC6

img.png

img.png

img.png




Virtual Memory

RAM: Page Table: Disk Pages:
[0] C.
1: Load Program [1] PC1
[2] PC2
2: Run PC1 [3] PC3
- malloc 4 KB PC4
PC5
3: Run PC2: PC6
- malloc 10 KB img.png
- Open img.png img.png
- Read all of image img.png
4: Run PC3
- Access OG 4 KB
- Finish program




Page Eviction/Replacement Strategies:

Page Access: 17 33 40 17 43 8 99 33 99 17



Page Faults




Page Eviction/Replacement Strategies:

Page Access: 17 33 40 17 43 8 99 33 99 17



Page Eviction/Replacement Strategies:

Page Access: 17 33 40 17 43 8 99 33 99 17



Page Eviction/Replacement Strategies:

Page Access: 17 33 40 17 43 8 99 33 99 17



Page Eviction/Replacement Strategies:

Page Access: 17 33 40 17 43 8 99 33 99 17



