
Memory Hierarchy

CS 423 - The University of Illinois
Wade Fagen-Ulmschneider

Memory Hierarchy:
High Cost /MB
High Performance

Low Cost /MB
Lower Performance

High Capacity

Low Capacity

Memory Hierarchy:
Low Capacity

Registers

High Cost /MB
High Performance

Low Cost /MB
Lower Performance

High Capacity

Low Capacity

Registers

CPU Caches

RAM

Storage
(SSD, HDD, Network, etc)

Memory Considerations
★ We have a limited amount of fast resources.

★ We have an abundance of slow resources.

★ How do we create an allusion of an abundance of fast resources?

Memory Overlays

CS 423 - The University of Illinois
Wade Fagen-Ulmschneider

Overlays

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]
[11]
[12]
[13]
[14]
[15]

Physical Memory Pages:
★ Memory overlays are

fixed-sized segments of data
used when a program exceeds
the available memory.

★ Simple, minimal complexity;
implemented at compile-time.

★ Still used in embedded systems.

Overlays

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]
[11]
[12]
[13]
[14]
[15]

Physical Memory Pages:
★ Memory overlays are

fixed-sized segments of data
used when a program exceeds
the available memory.

★ Simple, minimal complexity;
implemented at compile-time.

★ Still used in embedded systems.
Overlay Region

Main Program

Overlay Manager

Overlays

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]
[11]
[12]
[13]
[14]
[15]

Physical Memory Pages:
Program’s Overlays:
(Stored in secondary storage)

Overlay Region

Main Program

Overlay Manager

Overlay A

Overlay B

Overlay C

Overlays

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]
[11]
[12]
[13]
[14]
[15]

Physical Memory Pages:
Program’s Overlays:
(Stored in secondary storage)

Overlay Region

Main Program

Overlay Manager

Overlay A

Overlay B

Overlay C Overlay A

Overlays
★ Systems may have multiple overlays and overlays are loaded in

before they’re required by the program code.

○ All modern compilers/linkers support overlays.

○ Compiled code target a specific overlay (ex: 2 x64 KB overlays).

★ Disadvantages:
○ Fixed size segments (ex: 64 KB),
○ Platform-specific (must compile for different segment sizes),
○ Raw access to RAM; limited process isolation.

Fixed Partitions

CS 423 - The University of Illinois
Wade Fagen-Ulmschneider

Fixed Partitions

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]
[11]
[12]
[13]
[14]
[15]

Physical Memory Pages:
★ Fixed Partitions allocate a fixed

amount of physical RAM to
every process in a fixed location.

Fixed Partitions

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]
[11]
[12]
[13]
[14]
[15]

Physical Memory Pages:
★ Fixed Partitions allocate a fixed

amount of physical RAM to
every process in a fixed location.

★ On creation, each process
declares the maximum
memory space it may need.
○ OS allocates a sequential

amount of space for the
process.

Program A

Program B

Program C

Fixed Partitions

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]
[11]
[12]
[13]
[14]
[15]

Physical Memory Pages:
★ At any moment in time, a

program may use only a part of
its partition. Program A

Program B

Program C

Unused Space

Unused Space

Unused Space

Fixed Partitions

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]
[11]
[12]
[13]
[14]
[15]

Physical Memory Pages:
★ At any moment in time, a

program may use only a part of
its partition.

★ The unused space is internal
fragmentation -- OS allocated
the space, but process does not
utilize it fully.

Program A

Program B

Program C

Unused Space

Unused Space

Unused Space

Fixed Partitions

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]
[11]
[12]
[13]
[14]
[15]

Physical Memory Pages:
★ Additionally, the RAM will

become fragmented with
various sized holes as processes
enter/exit.
○ Some processes creation

may be blocked until a
partition is available.

★ Raw access to RAM; limited
process isolation.

Program A

Program E

Program C

Relocation and Variable
Partitions

CS 423 - The University of Illinois
Wade Fagen-Ulmschneider

Relocation

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]
[11]
[12]
[13]
[14]
[15]

Physical Memory Pages:
★ Reallocation provides a

translation from a “offset
(logical) address” to the physical
address through the
reallocation register.

Relocation

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]
[11]
[12]
[13]
[14]
[15]

Physical Memory Pages:
★ All programs will address their

memory from 0x0 ⇒ 0x{MAX}.

★ The “offset” or “logical” address
would be translated into the
physical address by relocating
the request:

 0x 3ac ⇒ 0x3c3a3ac

Program A

+Relocation
Register

Relocation

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]
[11]
[12]
[13]
[14]
[15]

Physical Memory Pages:
★ By changing the value of the

relocation register, each process
can now be moved around
within RAM. Program A

(Ex: Relocation: +0x3000)

Program A
(Ex: Relocation: +0xb000)

Relocation
★ First system with a “translation” between a “logical address” and

the “physical address” in RAM.
○ Disadvantage: Still requires sequential memory to be

committed.

★ Overhead: Single offset is needed to translate the page; the offset
can be adjusted by the OS as needed. (Low overhead!)

Paging and Virtual
Memory

CS 423 - The University of Illinois
Wade Fagen-Ulmschneider

Paging

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]
[11]
[12]
[13]
[14]
[15]

Physical Memory Pages:
★ Paging is an extension of

segmentation, where we divide
all data on our system into
fixed-sized pages.

Paging

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]
[11]
[12]
[13]
[14]
[15]

Physical Memory Pages:
★ Paging is an extension of

segmentation, where we divide
all data on our system into
fixed-sized pages.
○ Small enough to have minimal

internal fragmentation.

○ Large enough to have minimal
external fragmentation and
overhead.

Paging

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]
[11]
[12]
[13]
[14]
[15]

Physical Memory Pages:
★ Linux: getconf PAGESIZE

○ Reports the size of the page on
a system.

○ Most systems use 212, or 4096 B
/page.
■ I’ve started to see 216 (64 KiB)

used in the wild more and more.

$ getconf PAGESIZE
4096

Page Tables

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]
[11]
[12]
[13]
[14]
[15]

RAM:
[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]
[11]
[12]
[13]
[14]
[15]

P1 Page Table:
[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]
[11]
[12]
[13]
[14]
[15]

P2 Page Table:
[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]
[11]
[12]
[13]
[14]
[15]

P3 Page Table:

Page Table
★ Every process has its own page table.

○ Page table provides a translation between a “virtual address”
used by the program and the “physical address” on RAM.

○ No user process will ever see the real physical address!

Page Tables

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]
[11]
[12]
[13]
[14]
[15]

RAM:

@[7]

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]
[11]
[12]
[13]
[14]
[15]

P1 Page Table:

@[2]

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]
[11]
[12]
[13]
[14]
[15]

P2 Page Table:

@[5]

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]
[11]
[12]
[13]
[14]
[15]

P3 Page Table:

@[14]

Page Table
★ Every “virtual address” now has two components:

○ Page Offset: Where, within the page, is the data I’m
addressing?

○ Page Number: What index is our page within our virtual page
table?

Page Table
★ If our page is 212 bytes in size, the lowest 12 bits of a memory

address it the page offset.

★ The remaining bits is the page number.

Page Table
★ If our page is 212 bytes in size, the lowest 12 bits of a memory

address it the page offset.

★ The remaining bits is the page number.

Memory Address: 0x 32ac 51c16
Page Number: 0x 32ac51
Page Offset: 0x c16 (lowest 12 bits)

Page Table
Memory Address: 0x 32ac 51c16

★ The page table entry at 0x32ac51 will provide the translation to
the physical address in RAM.

Page Number: 0x 32ac51
Page Offset: 0x c16 (lowest 12 bits)

Page Tables

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]
[11]
[12]
[13]
[14]
[15]

RAM:

@[7]

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]
[11]
[12]
[13]
[14]
[15]

P1 Page Table:

@[2]

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]
[11]
[12]
[13]
[14]
[15]

P2 Page Table:

@[5]

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]
[11]
[12]
[13]
[14]
[15]

P3 Page Table:

@[14]

Page Table
★ Advantages:

○ Processes can have the allusion of sequential memory even
though the pages may be located in (translated to) various
locations throughout RAM.

○ Pages do not have to always be “present” in RAM; can point
to data on storage and load it in RAM when needed.
■ Need a mechanism to load pages in when needed.

○ Processes have no direct access to RAM; allows OS to provide
protections to RAM.

Page Table
★ Disadvantages:

○ Overhead:
■ Consider 4 GiB of RAM divided into 4 KiB pages:

4 GiB / 4 KiB == 1 MiB pages (!!)
 ...each process has its own 1 MiB pages!

○ Complexity: Non-trivial to translate addresses.

Page Faults and Page
Evictions

CS 423 - The University of Illinois
Wade Fagen-Ulmschneider

Virtual Memory

[0]
[1]
[2]
[3]

RAM:

1: Load Program

2: Run PC1
- malloc 4 KB

3: Run PC2:
- malloc 10 KB
- Open img.png
- Read all of image

4: Run PC3
- Access OG 4 KB
- Finish program

Page Table:
...
PC1
PC2
PC3
PC4
PC5
PC6

img.png
img.png
img.png

...

Disk Pages:

Virtual Memory Analysis

What is the range of possible file
sizes for img.png?

...
PC1
PC2
PC3
PC4
PC5
PC6

img.png
img.png
img.png

...

Disk Pages:

Virtual Memory Analysis

What is the range of possible file
sizes for ./programCode (“PC”)?

...
PC1
PC2
PC3
PC4
PC5
PC6

img.png
img.png
img.png

...

Disk Pages:

Virtual Memory

[0]
[1]
[2]
[3]

RAM:

1: Load Program

2: Run PC1
- malloc 4 KB

3: Run PC2:
- malloc 10 KB
- Open img.png
- Read all of image

4: Run PC3
- Access OG 4 KB
- Finish program

Page Table:
...
PC1
PC2
PC3
PC4
PC5
PC6

img.png
img.png
img.png

...

Disk Pages:

Page Eviction/Replacement Strategies:

Page Access: 17 33 40 17 43 8 99 33 99 17

Page Faults

Page Eviction/Replacement Strategies:

Page Access: 17 33 40 17 43 8 99 33 99 17

Page Eviction/Replacement Strategies:

Page Access: 17 33 40 17 43 8 99 33 99 17

Page Eviction/Replacement Strategies:

Page Access: 17 33 40 17 43 8 99 33 99 17

Page Eviction/Replacement Strategies:

Page Access: 17 33 40 17 43 8 99 33 99 17

