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Memory Considerations
★ We have a limited amount of fast resources.

★ We have an abundance of slow resources.

★ How do we create an allusion of an abundance of fast resources?
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Physical Memory Pages:
★ Memory overlays are 

fixed-sized segments of data 
used when a program exceeds 
the available memory.

★ Simple, minimal complexity; 
implemented at compile-time.

★ Still used in embedded systems.



Overlays

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]
[11]
[12]
[13]
[14]
[15]

Physical Memory Pages:
★ Memory overlays are 

fixed-sized segments of data 
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implemented at compile-time.
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Overlays
★ Systems may have multiple overlays and overlays are loaded in 

before they’re required by the program code.

○ All modern compilers/linkers support overlays.

○ Compiled code target a specific overlay (ex: 2 x64 KB overlays).

★ Disadvantages:
○ Fixed size segments (ex: 64 KB),
○ Platform-specific (must compile for different segment sizes),
○ Raw access to RAM; limited process isolation.
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Fixed Partitions
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Physical Memory Pages:
★ Fixed Partitions allocate a fixed 

amount of physical RAM to 
every process in a fixed location.
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Physical Memory Pages:
★ At any moment in time, a 

program may use only a part of 
its partition.

★ The unused space is internal 
fragmentation -- OS allocated 
the space, but process does not 
utilize it fully.
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Physical Memory Pages:
★ Additionally, the RAM will 

become fragmented with 
various sized holes as processes 
enter/exit.
○ Some processes creation 

may be blocked until a 
partition is available.

★ Raw access to RAM; limited 
process isolation.
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address through the 
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Physical Memory Pages:
★ All programs will address their 

memory from 0x0 ⇒ 0x{MAX}.

★ The “offset” or “logical” address 
would be translated into the 
physical address by relocating 
the request:

      0x 3ac    ⇒     0x3c3a3ac
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Physical Memory Pages:
★ By changing the value of the 

relocation register, each process 
can now be moved around 
within RAM. Program A

(Ex: Relocation: +0x3000)

Program A
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Relocation
★ First system with a “translation” between a “logical address” and 

the “physical address” in RAM.
○ Disadvantage: Still requires sequential memory to be 

committed.

★ Overhead: Single offset is needed to translate the page; the offset 
can be adjusted by the OS as needed. (Low overhead!)
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segmentation, where we divide 
all data on our system into 
fixed-sized pages.
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Physical Memory Pages:
★ Paging is an extension of 

segmentation, where we divide 
all data on our system into 
fixed-sized pages.
○ Small enough to have minimal 

internal fragmentation.

○ Large enough to have minimal 
external fragmentation and 
overhead.
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Physical Memory Pages:
★ Linux: getconf PAGESIZE

○ Reports the size of the page on 
a system.

○ Most systems use 212, or 4096 B 
/page.
■ I’ve started to see 216 (64 KiB) 

used in the wild more and more.

$ getconf PAGESIZE 
4096
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Page Table
★ Every process has its own page table.

○ Page table provides a translation between a “virtual address” 
used by the program and the “physical address” on RAM.

○ No user process will ever see the real physical address!
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Page Table
★ Every “virtual address” now has two components:

○ Page Offset: Where, within the page, is the data I’m 
addressing?

○ Page Number: What index is our page within our virtual page 
table?



Page Table
★ If our page is 212 bytes in size, the lowest 12 bits of a memory 

address it the page offset.

★ The remaining bits is the page number.



Page Table
★ If our page is 212 bytes in size, the lowest 12 bits of a memory 

address it the page offset.

★ The remaining bits is the page number.

Memory Address: 0x 32ac 51c16
Page Number: 0x 32ac51
Page Offset: 0x c16  (lowest 12 bits)



Page Table
Memory Address: 0x 32ac 51c16

★ The page table entry at 0x32ac51 will provide the translation to 
the physical address in RAM.

Page Number: 0x 32ac51
Page Offset: 0x c16  (lowest 12 bits)
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Page Table
★ Advantages:

○ Processes can have the allusion of sequential memory even 
though the pages may be located in (translated to) various 
locations throughout RAM.

○ Pages do not have to always be “present” in RAM; can point 
to data on storage and load it in RAM when needed.
■ Need a mechanism to load pages in when needed.

○ Processes have no direct access to RAM; allows OS to provide 
protections to RAM.



Page Table
★ Disadvantages:

○ Overhead:
■ Consider 4 GiB of RAM divided into 4 KiB pages:

4 GiB / 4 KiB  == 1 MiB pages (!!)
              ...each process has its own 1 MiB pages!

○ Complexity: Non-trivial to translate addresses.
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Virtual Memory
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RAM:

1: Load Program

2: Run PC1
- malloc 4 KB

3: Run PC2:
- malloc 10 KB
- Open img.png
- Read all of image

4: Run PC3
- Access OG 4 KB
- Finish program

Page Table:
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img.png
img.png

...

Disk Pages:



Virtual Memory Analysis

What is the range of possible file 
sizes for img.png?
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Virtual Memory Analysis
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sizes for ./programCode (“PC”)?
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Page Eviction/Replacement Strategies:

Page Access: 17  33  40  17  43  8  99  33  99  17
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