
Distributed File Systems

CS 423 - University of Illinois
Wade Fagen-Ulmschneider
(Slides built from Adam Bates and Tianyin Xu previous work on CS 423.)

File Systems
★ A file system provides a service for clients.

○ Provides an interface for creating files,
○ Provides an interface for reading files,
○ Provides an interface for writing files,
○ ...etc...

Distributed File Systems
★ A Distributed File System (DFS) is simply a classical model of a file

system distributed across multiple machines.
○ Goal: Share a set of dispersed files.
○ Resources on a host machine is local.
○ Resources on other machines is remote.

★ NFS: Network File System is a common DFS.

Distributed File Systems
Machine #1

Machine #2

/

/home /bin /lib

/home/usr

/

/waf /foo /bar

Distributed File Systems
Machine #1

Machine #2

/

/home /bin /lib

/home/usr

/

/waf /foo /bar

mount p
oint

Distributed File Systems
Machine #1/

/home /bin /lib

/home/usr/waf /home/usr/foo /home/usr/bar

/home/usr

Distributed File Systems
Machine #1/

/home /bin /lib

/home/usr/waf /home/usr/foo /home/usr/bar

★ The logical view of Machine #1 includes local and remote resources.

/home/usr

Caching in Distributed File Systems
★ The server in a DFS will nearly always be the bottleneck.

○ Idea: Increase performance using caching!

★ Caching Advantages:
○ Once cached, open/read/write/close can be done locally.
○ Significantly reduced network traffic.

★ Caching Problems:
○ Update Failures: What if the client never commits the updates to

the server?
○ Consistency: Multiple clients may have different caches of a file.

NFS Overview
★ NFS servers are stateless; each request provides all arguments

required for execution
○ Ex: ReadAt(inumber, position), complete stateless NOT the standard C read().
○ No need to perform network open() or close() on file.

★ Idempotent: Performing requests multiple times has same effect as
performing it exactly once
○ Ex: Server crashes between disk I/O and message send, client resend read,

server does operation again.
○ Ex: Read and write file blocks: just re-read or re-write file block – no side

effects.
○ Ex: What about “remove”? NFS does operation twice and second time

returns an advisory error.

NFS: Multiple Failure Modes
★ Failure Mode: Blocking

○ Block until the server comes back up.
○ ...but this may be next week?, next year?

★ Failure Mode: Error
○ Return a network error to the user application.
○ ...but most applications don’t even consider disk over network in their code.

Beyond NFS
★ Andrew File System (AFS), ~1980s

○ Distributed of trusted servers as a DFS.
○ Presents a homogeneous file system across the full system of

many hosts.

★ Google File System (GFS), ~2010s
○ Designed to run on cheap hardware with many failures.
○ Optimized to store large files (100s MBs+).
○ Optimized for long streaming reads (not small random reads).
○ Optimized for appended writes, not rewrites.
○ Minimizing bandwidth over minimizing latency.

CS 425: Distributed Systems

Security: Principles

CS 423 - University of Illinois
Wade Fagen-Ulmschneider
(Slides built from Adam Bates and Tianyin Xu previous work on CS 423.)

Security Properties
★ Confidentiality

★ Integrity

★ Authenticity

★ Availability

Security Properties
★ Confidentiality

Only trusted parties can read data.

★ Integrity

★ Authenticity

★ Availability

Security Properties
★ Confidentiality

★ Integrity
Only trusted parties have modified data.

★ Authenticity

★ Availability

Security Properties
★ Confidentiality

★ Integrity

★ Authenticity
Data originates from the correct party.

★ Availability

Security Properties
★ Confidentiality

★ Integrity

★ Authenticity

★ Availability
Data is available to trusted parties when needed.

Security Properties
★ Confidentiality

Only trusted parties can read data.

★ Integrity
Only trusted parties have modified data.

★ Authenticity
Data originates from the correct party.

★ Availability
Data is available to trusted parties when needed.

Security Functions
★ Define

★ Authentication

★ Authorization

★ Auditing

Security Functions
★ Define the security functions over principals (users, programs,

admins, etc)
 ...and also all entities (files, network sockets, IPC, etc)

★ Authentication

★ Authorization

★ Auditing

Security Functions
★ Define the security functions over principals (users, programs,

admins, etc)
 ...and also all entities (files, network sockets, IPC, etc)

★ Authentication
How do we determine the identity of the principal?

★ Authorization

★ Auditing

Security Functions
★ Define the security functions over principals (users, programs,

admins, etc)
 ...and also all entities (files, network sockets, IPC, etc)

★ Authentication
How do we determine the identity of the principal?

★ Authorization
Which principals are permitted to take what actions on which objects?

★ Auditing

Security Functions
★ Define the security functions over principals (users, programs,

admins, etc)
 ...and also all entities (files, network sockets, IPC, etc)

★ Authentication
How do we determine the identity of the principal?

★ Authorization
Which principals are permitted to take what actions on which objects?

★ Auditing
Record of (un)authorized actions that took place on the system for
post-hoc diagnostics.

Access Control Matrix
★ The access control matrix is a key feature of any authentication

schema:
○ For every protected resource, list of who is permitted to do what

○ Example: for each file/directory, a list of permissions:
■ owner, group, world
■ read, write, execute
■ setuid: program run with permission of principal who

installed it

○ Smartphone: list of permissions granted each app

Access Control Matrix
★ Access control matrices allow us to specify an arbitrary security

policy.
○ What properties should our security policy provide?

Principle of Least Privilege
★ Grant each principal the least permission possible for them to do

their assigned work:
○ Minimize code running inside kernel
○ Minimize code running as sysadmin

★ …however, this is a hard challenge!
○ ...hard to know what permissions are needed in advance.
○ ...hard to know what permissions should be granted.

■ Ex: to smartphone apps
■ Ex: to servers

Authorization w/ Intermediaries
★ Trusted Computing Base (TCB): set of software trusted to enforce

security policy.

★ Ex: Storage Server is trusted to check user access control list
○ Why? Because server must store/retrieve data on behalf of all

users.
○ Implication? security flaw in server allows attacker to take control

of system

★ Q: Is it good or bad to have a large TCB?

Security: Encryption

CS 423 - University of Illinois
Wade Fagen-Ulmschneider
(Slides built from Adam Bates and Tianyin Xu previous work on CS 423.)

Encryption

Encryption
C = E(M, KE)

Decryption
M = D(C, KD)

Plaintext Message

M
Ciphertext Message

C
Plaintext Message

M

E: Encryption Function
KE: Encryption Key (Private)

D: Decryption Function
KD: Decryption Key (Private)

Encryption

Encryption
C = E(M, KE)

Decryption
M = D(C, KD)

Plaintext Message

M
Ciphertext Message

C
Plaintext Message

M

E: Encryption Function
KE: Encryption Key (Private)

D: Decryption Function
KD: Decryption Key (Private)

★ If an attacker knows M (plaintext), C (ciphertext), E (encryption
function), and D (decryption function), they should:
○ Not be able determine any private keys (KE or KD)
○ Not be able to modify the message

★ Cryptography provides basis for authentication, privacy, and integrity

Authentication: Password
★ Q: How do we know user is who they say they are?

★ With password-based authentication, user shares a “private” secret
(their password). However:
○ User must remember their password
○ Short passwords ⇒ easy to remember, easy to guess!
○ Long passwords ⇒ hard to remember

Authentication: Password
★ Q: How do we know user is who they say they are?

★ With password-based authentication, user shares a “private” secret
(their password). However:
○ User must remember their password
○ Short passwords ⇒ easy to remember, easy to guess!
○ Long passwords ⇒ hard to remember

○ Q: How do we store passwords anyhow?

Storing Passwords
★ Store passwords in a file/database?

○ Anyone with sysadmin rights can read the passwords!

★ Encrypt passwords in a file/database?
○ If gain access to file/database, can check passwords offline.
○ If user reuses password, easy to check against other systems.

★ Encrypted in a file/database with a random salt?
○ Storage := HASH(Password ^ Salt)
○ Protects against a precomputed password table lookup

Authentication: Password
★ Passwords can be thought of as a primitive form of symmetric key

encryption:
○ KE (encryption key) and KD (decryption key) are identical, K.

Encryption
C = M^K

Decryption
M = C^K

Plaintext Message

M
Ciphertext Message

C
Plaintext Message

M

K: Symmetric Key K: Symmetric Key

Authentication: Password

Encryption
C = M^K

Decryption
M = C^K

Plaintext Message

M
Ciphertext Message

C
Plaintext Message

M

K: Symmetric Key K: Symmetric Key

★ If K is secure, both parties know M is authentic and secret.

★ Symmetric Key Examples: DES, AES

Authentication: Private Key
★ Q: How do we know user is who they say they are?

★ With private-key authentication, user has a file that stores a long,
cryptographic key (ex: 2048 bits).
○ User needs to safely store this secret!
○ Is the system storing the key secure?
○ How do we prove the secret without revealing details of the

secret?

Authentication: Private Key
★ Private Key Encryption provides asymmetric encryption:

○ Kpub (public key), available and widely accessible to everyone
○ Kpri (private key), private to the user

Encryption
C = E(M,Kpub)

Decryption
M = D(C,Kpri)

Plaintext Message

M
Ciphertext Message

C
Plaintext Message

M

Kpub: Public Key Kpri: Private Key

Authentication: Private Key

★ Keys are generated in pairs (Kpub, Kpri) and Kpri is kept private.

★ Only a private key holder (Kpri) can read the ciphertext message C.
○ Ensures secrecy of the message.

Encryption
C = E(M,Kpub)

Decryption
M = D(C,Kpri)

Plaintext Message

M
Ciphertext Message

C
Plaintext Message

M

Kpub: Public Key Kpri: Private Key

Two-Factor Authentication
★ Fact: Long cryptographic keys are hard to manage, can we get the

best of both worlds?

★ Store the private key (Kpri) inside of a chip.
○ Use a password/PIN to authorize access to the cryptographic key.
○ Use challenge/response to authenticate smartcard.
○ ...or other methods...

Public Key to Single Use Session Key
★ Fact: Public key encryption/decryption is slow; so can use public key

to establish (shared) session key.

★ Use public/private key to share a single use session key:
○ Unique session key is generated for a single session.
○ Provides the security advantages of public/private key while the

simplicity and speed of symmetric encryption.

Federated Authentication
★ In large networks, infeasible for everyone to share a secret with

everyone else.
○ Solution: “Authentication Server” (Kerberos)

○ Everyone shares (a separate) secret with a Kerberos server.
○ Server provides shared session key for the service requested.
○ Everyone trusts authentication server.

■ However, if compromise server, can do anything!

Federated Authentication
★ In large networks, infeasible for everyone to share a secret with

everyone else.
○ Solution: “Authentication Server” (Kerberos)

○ Everyone shares (a separate) secret with a Kerberos server.
○ Server provides shared session key for the service requested.
○ Everyone trusts authentication server.

■ However, if compromise server, can do anything!

I’d like a key to access service X...
Kerberos

...here’s a session key for service X: 3c5fc...

CS 461: Computer Security

