
Virtual Machines

CS 423 - University of Illinois
Wade Fagen-Ulmschneider
(Slides built from Adam Bates and Tianyin Xu previous work on CS 423.)

Cloud Computing (Generation 1)
★ Dominated by Infrastructure-as-a-Service (IaaS) clouds (and

storage services)
○ Big winner was Amazon EC2

★ Hypervisors that virtualized the hardware-software interface

★ Customers were responsible for provisioning the software stack
from the kernel up

Cloud Computing (Generation 1)

Hardware

Host Kernel

Hypervisor
(Generally Type 2, limited Type 1)

Guest OS Guest OS Guest OS

Cloud Computing (Generation 1)
★ Type 2 Hypervisors:

○ Strong isolation between different customer’s virtual
machines

○ VMM is ‘small’ compared to the kernel
■ Less LoC means ⇒ less bugs
■ Fewer bugs ⇒ usually more security

Cloud Computing (Generation 1)
★ Most “practical” attacks on IaaS clouds relied on side channels to

detect co-location between attacker and victim VM
○ E.g., we could correlate the performance of a shared resource
○ network RTT’s, cache performance

★ After co-resident, make inferences about victim’s activities

Hypervisor
(Generally Type 2, limited Type 1)

Guest OS
(Target)

Guest OS
(Spy)

Guest OS

Cloud Computing (Generation 1)
★ Overall:

○ Centralizing the management of hardware ⇒
Increased reliability, Decreased IT costs

○ Cheap VMs allows services to run in their own environments
(further increasing reliability)

○ Extremely high flexibility (you build the OS!), but was all that
flexibility needed?

Cloud Computing (Generation 2)
★ Introduction of various service models:

○ CaaS: Container as a Service
○ PaaS: Platform as a Service
○ FaaS: Function as a Service
○ SaaS: Software as a Service

Hardware Hardware Hardware Hardware Hardware

Virtualization Virtualization Virtualization Virtualization Virtualization

Operating
System

Operating
System

Operating
System

Operating
System

Operating
System

Containers
(Optional) Containers? Containers? Containers?Containers

Runtime Runtime Runtime Runtime Runtime

Applications Applications Applications Applications Applications

Functions Functions Functions Functions Functions

Data Data Data Data Data

IaaS CaaS PaaS FaaS SaaS

Customer
Managed

Customer
Managed Unit

of Scale

Abstracted by
Vendor

Why Choose CaaS?
★ Containers provide a known, configurable runtime environment

(“user land”) without managing an OS or Kernel.

★ AWS: Elastic Container Service (ECS)
★ Google: Google App Engine
★ ...many others...

Why Choose PaaS?
★ Lots of user-level services require configuration, maintenance,

and performance optimization (“systems knowledge”). What if
this is provided for us?

★ Databases: SQL, NoSQL (mongodb), In-Memory (redis), etc
★ AI/ML Algorithms: AutoML, Speech Recognition, Image

Classification, etc
★ Build Tools: Test Suites, Data Pipelines, etc
★ ...hundreds of development platforms...

Why Choose FaaS?
★ Common to need software to run “on-demand” to some event for

short bursts of computation.
○ Examples:

■ Profile Photo Upload ⇒ Need conversation to many different sizes for various layouts
■ On-Demand Data ⇒ Need creation of a CSV w/ processed data based on user inputs
■ Many computational tasks that are expensive but uncommon

★ AWS: Lambdas
★ Google: Cloud Functions

Why Choose SaaS?
★ What if you never want to see source code?

○ Almost any website you log into can be considered “SaaS”

★ Systems tools are used to create SaaS platforms -- but generally
SaaS is beyond the scope of systems.

Hardware Hardware Hardware Hardware Hardware

Virtualization Virtualization Virtualization Virtualization Virtualization

Operating
System

Operating
System

Operating
System

Operating
System

Operating
System

Containers
(Optional) Containers? Containers? Containers?Containers

Runtime Runtime Runtime Runtime Runtime

Applications Applications Applications Applications Applications

Functions Functions Functions Functions Functions

Data Data Data Data Data

IaaS CaaS PaaS FaaS SaaS

Customer
Managed

Customer
Managed Unit

of Scale

Abstracted by
Vendor

$ $$ $$$$

Hardware

Virtualization

Operating
System

Operating
System

Containers
(Optional) Containers?Containers

Runtime Runtime Runtime

Applications Applications Applications Applications Applications

Functions Functions Functions Functions Functions

Data Data Data Data Data

IaaS CaaS PaaS FaaS SaaS

Customer
Managed

Customer
Managed Unit

of Scale

Abstracted by
Vendor

$ $$ $$$$

Cost /Hour
vCPU: $0.021811

RAM: $0.002923 /GB

Cost /Year
vCPU: $191

RAM: $26 /GB

Cost /Hour
vCPU: $0.0526

RAM: $0.0071 /GB

Cost /Year
vCPU: $461

RAM: $62 /GB

Based on Google Cloud prices for non-preemptable, always-on, and on-demand services with no
long-term commitment, sourced from https://cloud.google.com/appengine/pricing in April 2021

SQL Server

Cost /Hour
vCPU: $0.0413

RAM: $0.0070 /GB

Cost /Year
vCPU: $362

RAM: $61 /GB

Auto ML

Cost /Hour
Classification:
$3.15 /node-hr

+
Prediction:

$1.25 /node-hr

Cloud Functions

Cost /second
$0.0000100 /GHz
$0.0000025 /GB

Cost /hour:
$0.036 /GHz
$0.009 /GB

Cost /year:
$315.36 /GHz

== $946 3GHz

$79 /GB

https://cloud.google.com/appengine/pricing

Containers

CS 423 - University of Illinois
Wade Fagen-Ulmschneider
(Slides built from Adam Bates and Tianyin Xu previous work on CS 423.)

Motivation
★ Rather than virtualize both user space and kernel space… why not just

‘virtualize’ user space?

★ Meets the needs of most customers, who don’t require significant
customization of the OS.

★ Sometimes called ‘OS virtualization,’ which is highly misleading given
our existing taxonomy of virtualization techniques

★ Running natively on host, containers enjoy bare metal performance
without reliance on advanced virtualization support from hardware.

Cloud Computing (Generation 1)

Hardware

Host Kernel

Guest
Container

Guest
Container

Guest
Container

Guest
Container

Cloud Computing (Generation 1)

Hardware

Host Kernel

Guest
Container

Guest
Container

Guest
Container

Guest
Container

Looks like a VM
from the inside!

Acts like a process
from the outside!

Containers Aren’t New...
★ Lots of work on containers dating back decades:

○ BSD Jails
○ Solaris Zones
○ Linux containers
○ ...etc…

★ ...but weren’t well advertised, not user-friendly (used low-level system
interfaces), not easily deployable (usually required root).

Enter: Docker

Docker
★ Big Idea: “Build, Ship, and Run App, Anywhere”

○ Debug your app, not your environment
○ Securely build and share any application, anywhere
○ Accomplished by including everything in a container

Container Support on
OSes

CS 423 - University of Illinois
Wade Fagen-Ulmschneider
(Slides built from Adam Bates and Tianyin Xu previous work on CS 423.)

Containers are Build on Linux Utilities
★ Linux Containers (LXC):

○ chroot
○ namespace

■ PID, Network, User, IPC, uts, mount
○ cgroups for HW isolation
○ Security profiles and policies
○ Apparmor, SELinux, Seccomp

Containers are Build on Linux Utilities
★ Linux Containers (LXC):

○ chroot
○ namespace

■ PID, Network, User, IPC, uts, mount
○ cgroups for HW isolation
○ Security profiles and policies
○ Apparmor, SELinux, Seccomp

Containers are Build on Linux Utilities
★ chroot changes the apparent root directory for a given process and

all of its children.
○ An old idea! POSIX call dating back to 1979
○ Ex: /usr/home/waf/myapp ⇒ /

■ Process is no longer able to “see” below myapp directory!

★ Not intended to defend against privileged attackers.
○ With root access you can do all sorts of things to break out (like

chroot’ing again)

★ Does not hide processes, network, etc!

Containers are Build on Linux Utilities
★ Linux Containers (LXC):

○ chroot
○ namespace

■ PID, Network, User, IPC, uts, mount
○ cgroups for HW isolation
○ Security profiles and policies
○ Apparmor, SELinux, Seccomp

Namespaces
★ namespaces are the key feature enabling containerization!

○ Partition practically all OS functionalities so that different process
domains see different things

○ Mount (mnt): Controls mount points
○ Process ID (pid): Exposes a new set of process IDs distinct from other namespaces

(i.e., the hosts)
○ Network (net): Dedicated network stack per container; each interface present in

exactly one namespace at a time.
○ IPC (inter-process comm.): Isolate processes from various methods of POSIX IPC

■ No shared memory between containers!
○ UTS: Allows the host to present different host/domain names to different containers.
○ User ID (user) and cgroup namespace -- allows the container to think its root!
○ ...

Containers are Build on Linux Utilities
★ Linux Containers (LXC):

○ chroot
○ namespace

■ PID, Network, User, IPC, uts, mount
○ cgroups for HW isolation
○ Security profiles and policies
○ Apparmor, SELinux, Seccomp

Namespaces
★ cgroups limit, track and isolate utilization of hardware resources

including CPU, memory, and disk.
○ Important for ensuring QoS between customers! Protects against

bad neighbors

★ Features:
○ Resource limitation
○ Prioritization
○ Accounting (for billing customers!)
○ Control, e.g., freezing groups
○ The cgroup namespace prevents containers from viewing or modifying

their own group assignment...

Containers are Build on Linux Utilities
★ Linux Containers (LXC):

○ chroot
○ namespace

■ PID, Network, User, IPC, uts, mount
○ cgroups for HW isolation
○ Security profiles and policies (Apparmor, SELinux, Seccomp)

Security
“Containers do not contain.”
 - Dan Walsh (SELinux contributor)

Containers are Build on Linux Utilities
★ It is real hard to prove that every feature of the operating system is

namespaced.
○ /sys? /proc? /dev? LKMs? kernel keyrings?
○ Root access to any of these enables pwning the host

★ Solution?
○ Secure linux distributions (ex: SELinux) provide good support for

namespace labeling. Does not prevent against physical attacks
(physical security is part of security)!

○ Much easier to express a correct isolation policy over a
coarse-grained namespace than, say, individual processes.

