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Cloud Computing (Generation 1)

* Dominated by Infrastructure-as-a-Service (laaS) clouds (and
storage services)

o Big winner was Amazon EC2

% Hypervisors that virtualized the hardware-software interface

% Customers were responsible for provisioning the software stack
from the kernel up



Cloud Computing (Generation 1)
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Cloud Computing (Generation 1)

* Type 2 Hypervisors:
o Strong isolation between different customer’s virtual
machines
o VMM is ‘small compared to the kernel
m Less LoC means = less bugs
m Fewer bugs = usually more security



Cloud Computing (Generation 1)
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% Most “practical” attacks on laaS clouds relied on side channels to
detect co-location between attacker and victim VM
o E.g. we could correlate the performance of a shared resource
o hnetwork RTT's, cache performance

% After co-resident, make inferences about victim's activities
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Cloud Computing (Generation 1)

* Overall:
o Centralizing the management of hardware =
Increased reliability, Decreased IT costs

o Cheap VMs allows services to run in their own environments
(further increasing reliability)

o Extremely high flexibility (you build the OS!), but was all that
flexibility needed?



Cloud Computing

% Introduction of various service models:
o CaaS: Container as a Service
o PaaS: Platform as a Service
o [FaaS: Function as a Service
o SaaS: Software as a Service
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Why Choose CaaSs?

% Containers provide a known, configurable runtime environment
(“user land”) without managing an OS or Kernel.

% AWS: Elastic Container Service (ECS)
* Google: Google App Engine
* ..many others...



Why Choose PaaS?

*

* % % %

Lots of user-level services require configuration, maintenance,
and performance optimization (“systems knowledge”). What if
this is provided for us?

Databases: SQL, NoSQL (mongodb), In-Memory (redis), etc
Al/ML Algorithms: AutoML, Speech Recognition, Image
Classification, etc

Build Tools: Test Suites, Data Pipelines, etc

..hundreds of development platformes...



Why Choose FaaS?

% Common to need software to run “on-demand” to some event for
short bursts of computation.

o Examples:

m Profile Photo Upload = Need conversation to many different sizes for various layouts
m  On-Demand Data = Need creation of a CSV w/ processed data based on user inputs
m  Many computational tasks that are expensive but uncommon

* AWS: Lambdas
* Google: Cloud Functions



Why Choose SaaS?

* What if you never want to see source code?
o Almost any website you log into can be considered “SaaS”

% Systems tools are used to create SaaS platforms -- but generally
SaaS is beyond the scope of systemes.
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Motivation

% Rather than virtualize both user space and kernel space... why not just
‘vVirtualize' user space?

* Meets the needs of most customers, who don't require significant
customization of the OS.

* Sometimes called ‘OS virtualization,” which is highly misleading given
our existing taxonomy of virtualization technigues

* Running natively on host, containers enjoy bare metal performance
without reliance on advanced virtualization support from hardware.



Cloud Computing (Generation 1)
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Cloud Computing (Generation 1)
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Containers Aren’t New...

* Lots of work on containers dating back decades:
o BSD Jails
o Solaris Zones
o Linux containers
o ..etc..

* ..but weren't well advertised, not user-friendly (used low-level system
interfaces), not easily deployable (usually required root).



Enter: Docker




Docker

% Big ldea: “Build, Ship, and Run App, Anywhere”
o Debug your app, not your environment
o Securely build and share any application, anywhere
o Accomplished by including everything in a container
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Containers are Build on Linux Utilities

* Linux Containers (LXC):
o chroot
o namespace
m PID, Network, User, IPC, uts, mount
o cgroups for HW isolation
o Security profiles and policies
o Apparmor, SELinux, Seccomp
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Containers are Build on Linux Utilities

% chroot changes the apparent root directory for a given process and
all of its children.
o An old idea! POSIX call dating back to 1979
o Ex: fusr/home/waf/myapp = /
m Process is no longer able to “see” below myapp directory!

* Not intended to defend against privileged attackers.
o With root access you can do all sorts of things to break out (like

chroot'ing again)

% Does not hide processes, network, etc!



Containers are Build on Linux Utilities
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Namespaces

% namespaces are the key feature enabling containerization!
o Partition practically all OS functionalities so that different process
domains see different things

o Mount (mnt): Controls mount points

o Process ID (pid): Exposes a new set of process |IDs distinct from other namespaces
(i.e., the hosts)

o Network (net): Dedicated network stack per container; each interface present in
exactly one namespace at a time.

o IPC (inter-process comm.): Isolate processes from various methods of POSIX IPC

m No shared memory between containers!
o UTS: Allows the host to present different host/domain names to different containers.
o User ID (user) and cgroup namespace -- allows the container to think its root!
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Containers are Build on Linux Utilities

* Linux Containers (LXC):
o chroot
o namespace
m PID, Network, User, IPC, uts, mount
o cgroups for HW isolation
o Security profiles and policies
o Apparmor, SELinux, Seccomp



Namespaces

% cgroups limit, track and isolate utilization of hardware resources

including CPU, memory, and disk.
o Important for ensuring QoS between customers! Protects against

bad neighbors

% Features:
o Resource limitation
Prioritization
Accounting (for billing customers!)
Control, e.g., freezing groups
The cgroup namespace prevents containers from viewing or modifying

their own group assignment...

O O O O



Containers are Build on Linux Utilities

* Linux Containers (LXC):
o chroot
o namespace
m PID, Network, User, IPC, uts, mount
o cgroups for HW isolation
o Security profiles and policies (Apparmor, SELinux, Seccomp)



Security

“Containers do not contain.”
- Dan Walsh (SELinux contributor)



Containers are Build on Linux Utilities

* It is real hard to prove that every feature of the operating system is
namespaced.
o /[sys? /proc? /dev? LKMs? kernel keyrings?
o Root access to any of these enables pwning the host

* Solution?

o Secure linux distributions (ex: SELinux) provide good support for
namespace labeling. Does not prevent against physical attacks
(ohysical security is part of security)!

o Much easier to express a correct isolation policy over a
coarse-grained namespace than, say, individual processes.
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User Level process User space
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Figure 1: LSM Hook Architecture
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sue k. conTaiiners aren't magqic

These 15 lines of bash will start a container running the fish shell. T ry it!
(download this script at bit.ly/containers-arent-magic)

wget bit.ly/fish-container -0 fish.tar # 1. download the image
mkdir container-root; cd container-root f
tar —=xf ../rish.tar # 2. unpack image into a directory
cgroup_id="cgroup_$(shuf -i 1000-2000 -n 1)" # 3. generate random cgroup name
cgcreate -g "cpu,cpuacct,memory: $cgroup_id” # 4. make a cgroup &
cgset -r cpu.shares=512 "$cgroup_id" # set CPU/memory limits
cgset -r memory.limit_in_bytes=1000000000 \
"$cgroup_id" f#
cgexec -g "cpu,cpuacct,memory: $cgroup_id"” \ # 5. use the cgroup
unshare -fmuipn --mount-proc \ # 6. make + use some namespaces
chroot "$PWD" \ # 7. change root directory

/bin/sh -c¢ " f
/bin/mount -t proc proc /proc && f
hostname container-fun-times && f
/usr/bin/fish” #

8. use the right /proc
9. change the hostname
10. finally, start fish!



