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Cloud Computing (Generation 1)
★ Dominated by Infrastructure-as-a-Service (IaaS) clouds (and 

storage services)
○ Big winner was Amazon EC2

★ Hypervisors that virtualized the hardware-software interface

★ Customers were responsible for provisioning the software stack 
from the kernel up
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Cloud Computing (Generation 1)
★ Type 2 Hypervisors:

○ Strong isolation between different customer’s virtual 
machines

○ VMM is ‘small’ compared to the kernel
■ Less LoC means ⇒ less bugs
■ Fewer bugs ⇒ usually more security



Cloud Computing (Generation 1)
★ Most “practical” attacks on IaaS clouds relied on side channels to 

detect co-location between attacker and victim VM
○ E.g., we could correlate the performance of a shared resource
○ network RTT’s, cache performance

★ After co-resident, make inferences about victim’s activities
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Cloud Computing (Generation 1)
★ Overall:

○ Centralizing the management of hardware ⇒
Increased reliability, Decreased IT costs

○ Cheap VMs allows services to run in their own environments
(further increasing reliability)

○ Extremely high flexibility (you build the OS!), but was all that 
flexibility needed?



Cloud Computing (Generation 2)
★ Introduction of various service models:

○ CaaS: Container as a Service
○ PaaS: Platform as a Service
○ FaaS: Function as a Service
○ SaaS: Software as a Service
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Why Choose CaaS?
★ Containers provide a known, configurable runtime environment 

(“user land”) without managing an OS or Kernel.

★ AWS: Elastic Container Service (ECS)
★ Google: Google App Engine
★ ...many others...



Why Choose PaaS?
★ Lots of user-level services require configuration, maintenance, 

and performance optimization (“systems knowledge”).  What if 
this is provided for us?

★ Databases: SQL, NoSQL (mongodb), In-Memory (redis), etc
★ AI/ML Algorithms: AutoML, Speech Recognition, Image 

Classification, etc
★ Build Tools: Test Suites, Data Pipelines, etc
★ ...hundreds of development platforms...



Why Choose FaaS?
★ Common to need software to run “on-demand” to some event for 

short bursts of computation.
○ Examples:

■ Profile Photo Upload ⇒ Need conversation to many different sizes for various layouts
■ On-Demand Data ⇒ Need creation of a CSV w/ processed data based on user inputs
■ Many computational tasks that are expensive but uncommon

★ AWS: Lambdas
★ Google: Cloud Functions



Why Choose SaaS?
★ What if you never want to see source code?

○ Almost any website you log into can be considered “SaaS”

★ Systems tools are used to create SaaS platforms -- but generally 
SaaS is beyond the scope of systems.
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Cost /Hour
vCPU: $0.021811

RAM: $0.002923 /GB

Cost /Year
vCPU: $191

RAM: $26 /GB

Cost /Hour
vCPU: $0.0526

RAM: $0.0071 /GB

Cost /Year
vCPU: $461

RAM: $62 /GB

Based on Google Cloud prices for non-preemptable, always-on, and on-demand services with no 
long-term commitment, sourced from https://cloud.google.com/appengine/pricing in April 2021

SQL Server

Cost /Hour
vCPU: $0.0413

RAM: $0.0070 /GB

Cost /Year
vCPU: $362

RAM: $61 /GB

Auto ML

Cost /Hour
Classification:
$3.15 /node-hr

+
Prediction:

$1.25 /node-hr

Cloud Functions

Cost /second
$0.0000100 /GHz
$0.0000025 /GB

Cost /hour:
$0.036 /GHz
$0.009 /GB

Cost /year:
$315.36 /GHz

== $946 3GHz

$79 /GB

https://cloud.google.com/appengine/pricing
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Motivation
★ Rather than virtualize both user space and kernel space… why not just 

‘virtualize’ user space?

★ Meets the needs of most customers, who don’t require significant 
customization of the OS.

★ Sometimes called ‘OS virtualization,’ which is highly misleading given 
our existing taxonomy of virtualization techniques

★ Running natively on host, containers enjoy bare metal performance 
without reliance on advanced virtualization support from hardware.



Cloud Computing (Generation 1)
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Cloud Computing (Generation 1)
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Containers Aren’t New...
★ Lots of work on containers dating back decades:

○ BSD Jails
○ Solaris Zones
○ Linux containers
○ ...etc…

★ ...but weren’t well advertised, not user-friendly (used low-level system 
interfaces), not easily deployable (usually required root).



Enter: Docker



Docker
★ Big Idea: “Build, Ship, and Run App, Anywhere”

○ Debug your app, not your environment
○ Securely build and share any application, anywhere
○ Accomplished by including everything in a container





Container Support on 
OSes
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Containers are Build on Linux Utilities
★ Linux Containers (LXC):

○ chroot
○ namespace

■ PID, Network, User, IPC, uts, mount
○ cgroups for HW isolation
○ Security profiles and policies
○ Apparmor, SELinux, Seccomp
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Containers are Build on Linux Utilities
★ chroot changes the apparent root directory for a given process and 

all of its children.
○ An old idea! POSIX call dating back to 1979
○ Ex:  /usr/home/waf/myapp ⇒ /

■ Process is no longer able to “see” below myapp directory!

★ Not intended to defend against privileged attackers.
○ With root access you can do all sorts of things to break out (like 

chroot’ing again)

★ Does not hide processes, network, etc!



Containers are Build on Linux Utilities
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Namespaces 
★ namespaces are the key feature enabling containerization!

○ Partition practically all OS functionalities so that different process 
domains see different things

○ Mount (mnt): Controls mount points
○ Process ID (pid): Exposes a new set of process IDs distinct from other namespaces 

(i.e., the hosts)
○ Network (net): Dedicated network stack per container; each interface present in 

exactly one namespace at a time.
○ IPC (inter-process comm.): Isolate processes from various methods of POSIX IPC

■ No shared memory between containers!
○ UTS: Allows the host to present different host/domain names to different containers.
○ User ID (user) and cgroup namespace -- allows the container to think its root!
○ ...





Containers are Build on Linux Utilities
★ Linux Containers (LXC):

○ chroot
○ namespace

■ PID, Network, User, IPC, uts, mount
○ cgroups for HW isolation
○ Security profiles and policies
○ Apparmor, SELinux, Seccomp



Namespaces 
★ cgroups limit, track and isolate utilization of hardware resources 

including CPU, memory,  and disk.
○ Important for ensuring QoS between customers! Protects against 

bad neighbors

★ Features:
○ Resource limitation
○ Prioritization
○ Accounting (for billing customers!)
○ Control, e.g., freezing groups
○ The cgroup namespace prevents containers from viewing or modifying 

their own group assignment...



Containers are Build on Linux Utilities
★ Linux Containers (LXC):

○ chroot
○ namespace

■ PID, Network, User, IPC, uts, mount
○ cgroups for HW isolation
○ Security profiles and policies (Apparmor, SELinux, Seccomp)



Security
“Containers do not contain.”
  - Dan Walsh (SELinux contributor)



Containers are Build on Linux Utilities
★ It is real hard to prove that every feature of the operating system is 

namespaced.
○ /sys? /proc? /dev? LKMs? kernel keyrings?
○ Root access to any of these enables pwning the host

★ Solution?
○ Secure linux distributions (ex: SELinux) provide good support for 

namespace labeling.  Does not prevent against physical attacks 
(physical security is part of security)!

○ Much easier to express a correct isolation policy over a 
coarse-grained namespace than, say, individual processes.








