Virtual Machines

CS 423 - University of lllinois

Wade Fagen-Ulmschneider
(Slides built from Adam Bates and Tianyin Xu previous work on CS 423.)

Cloud Computing (Generation 1)

* Dominated by Infrastructure-as-a-Service (laaS) clouds (and
storage services)

o Big winner was Amazon EC2

% Hypervisors that virtualized the hardware-software interface

% Customers were responsible for provisioning the software stack
from the kernel up

Cloud Computing (Generation 1)

Guest OS

Guest OS

Hypervisor

Guest OS

- (Generally Type 2, limited Type 1)

Host Kernel

Hardware

Cloud Computing (Generation 1)

* Type 2 Hypervisors:
o Strong isolation between different customer’s virtual
machines
o VMM is ‘small compared to the kernel
m Less LoC means = less bugs
m Fewer bugs = usually more security

Cloud Computing (Generation 1)

|17

% Most “practical” attacks on laaS clouds relied on side channels to
detect co-location between attacker and victim VM
o E.g. we could correlate the performance of a shared resource
o hnetwork RTT's, cache performance

% After co-resident, make inferences about victim's activities

Guest OS Guest OS Guest OS
(Target) (Spy)
Hypervisor

(Generally Type 2, limited Type 1)

Cloud Computing (Generation 1)

* Overall:
o Centralizing the management of hardware =
Increased reliability, Decreased IT costs

o Cheap VMs allows services to run in their own environments
(further increasing reliability)

o Extremely high flexibility (you build the OS!), but was all that
flexibility needed?

Cloud Computing

% Introduction of various service models:
o CaaS: Container as a Service
o PaaS: Platform as a Service
o [FaaS: Function as a Service
o SaaS: Software as a Service

Data Data Data Data Data
Functions Functions Functions Functions Functions
Applications Applications Applications Applications Applications
Runtime Runtime Runtime Runtime Runtime
Cont:mners Containers Containers? Containers? Containers?

(Optional)
Operating Operating Operating Operating Operating
System System System System System

Virtualization

Virtualization

Virtualization

Virtualization

Virtualization

Hardware

Hardware

Hardware

Hardware

Hardware

e B
Customer
Managed

N\ J

e D\
Customer

Managed Unit
of Scale

s D\

Abstracted by
Vendor
N)

Why Choose CaaSs?

% Containers provide a known, configurable runtime environment
(“user land”) without managing an OS or Kernel.

% AWS: Elastic Container Service (ECS)
* Google: Google App Engine
* ..many others...

Why Choose PaaS?

*

* % % %

Lots of user-level services require configuration, maintenance,
and performance optimization (“systems knowledge”). What if
this is provided for us?

Databases: SQL, NoSQL (mongodb), In-Memory (redis), etc
Al/ML Algorithms: AutoML, Speech Recognition, Image
Classification, etc

Build Tools: Test Suites, Data Pipelines, etc

..hundreds of development platformes...

Why Choose FaaS?

% Common to need software to run “on-demand” to some event for
short bursts of computation.

o Examples:

m Profile Photo Upload = Need conversation to many different sizes for various layouts
m On-Demand Data = Need creation of a CSV w/ processed data based on user inputs
m Many computational tasks that are expensive but uncommon

* AWS: Lambdas
* Google: Cloud Functions

Why Choose SaaS?

* What if you never want to see source code?
o Almost any website you log into can be considered “SaaS”

% Systems tools are used to create SaaS platforms -- but generally
SaaS is beyond the scope of systemes.

$$

$$$9$ -

Data Data Data Data Data
J J
N\ Y
Functions Functions Functions Functions Functions
J J
N\ N
Applications Applications Applications Applications Applications
J J
N N
Runtime Runtime Runtime Runtime Runtime
J J
. N N
Cont?mers Containers Containers? Containers? Containers?
(Optional)))
N\ N\
Operating Operating Operating Operating Operating
System System System System System

Virtualization

Virtualization

Virtualization

Virtualization

Virtualization

Hardware

Hardware

Hardware

Hardware

Hardware

e R
Customer
Managed

N J

e D\
Customer

Managed Unit
of Scale

e D

Abstracted by
Vendor
0)

$ $$ $$$9$ -

(N\ (N\ (N\ (N\ (N e N\
Data Data Data Data Data Customer
N\ J N\ J N\ J N\ J - J Managed
(N\ (™\ (™\ (N g N _ J
Functions Functions Functions Functions Functions
& J & J & J & J A\ J CUStomer .
r N e N e ™ e N c 2 Managed Unit
Applications Applications Applications Applications Applications of Scale
& J & J & J & J A\ J Ve Y
4 N\ 4 N\ 4 N\
. . e N O\ . Abstracted by
Runtime Runtime SQL Server Cloud Functions Runtime Vendor
~ / ~ / Cost /Hour Cost /second < < _ Y
(c t . A () VvCPU: $0.0413 $0.0000100 /GHz (0
ontainers o RAM: $0.0070 /GB 0.0000025 /GB .
(Optional) Containers v 4 . 4 Containers?
P) _ Y, Cost /Year Cost /hour: _)
p S VCPU: $362 $0.036 /GHz p -
Operating /Cost Hour \ K RAM: $61 /GB/ $0.009 /GB Operating
System vCPU: $0.0526 Cost /year: System
- RAM: $0.0071 /GB $315.36 /GHz ~ -
== $946 3GHz (0
/CO_Stm h Cost /Year Auto ML q q q
vCPU: $0.021811 VCPU: $461 N — $79 /GB Virtualization
RAM: $0.002923 /GB RAM: $62 /GB Classification: ~ <
Cost /Year $3.15 /node-hr e D
VCPU: $191 e Hard
Prediction: araware
RAM: $26 /GB
_ —) K / K $1.25 /node-hr/ K / L)
I Based on Google Cloud prices for non-preemptable, always-on, and on-demand services with no

long-term commitment, sourced from https://cloud.google.com/appenaine/pricing in April 2021

https://cloud.google.com/appengine/pricing

Containers

CS 423 - University of lllinois

Wade Fagen-Ulmschneider
(Slides built from Adam Bates and Tianyin Xu previous work on CS 423.)

Motivation

% Rather than virtualize both user space and kernel space... why not just
‘vVirtualize' user space?

* Meets the needs of most customers, who don't require significant
customization of the OS.

* Sometimes called ‘OS virtualization,” which is highly misleading given
our existing taxonomy of virtualization technigues

* Running natively on host, containers enjoy bare metal performance
without reliance on advanced virtualization support from hardware.

Cloud Computing (Generation 1)

Guest Guest Guest Guest
Container Container Container Container

Host Kernel

Hardware

Cloud Computing (Generation 1)

Guest
Container

Looks like a VM
from the inside!

\\

Guest Guest
Container Container

Host Kernel

Guest

Container

\

Hardware

Acts like a process

from the outside!

UA E\I'\N—S
Suah B4

conTainers vs \VMs

o. container is a
group of processes

o. virtual machine is
o fake computer

each one has its own

contaiiners use
less RAM

This is becavse they share ¢
r
o operatiag system single Linux kernel.

I E)j- é V @ - T con easily run

1 Linox EJ Linuvy Uindows RsSD 2 thousandsz of

Kerne| lots of containers VM VM hla! Computer small containecs ¥

computer Computer
Containers start faster

becavse +hey're processes and
process start fast @

container

LM My opero.‘hng
System is still boa'l'ms

Containers are more
Comp\ica’!ed Yo secure

- T'm +o+a.!lt$ isolated
D £com other \Ms on
A +his COmpu‘}er!

containe,

ven i+ really depends

how you configured me..

it's harder Yo figuce
outr what yod can do
in o coatainer

e just pretend T e
s computerY it's easy ¥
VM P . asy o

— T act \ike & VM Kinde
=% but there ace exceptions...

container

Containers Aren’t New...

* Lots of work on containers dating back decades:
o BSD Jails
o Solaris Zones
o Linux containers
o ..etc..

* ..but weren't well advertised, not user-friendly (used low-level system
interfaces), not easily deployable (usually required root).

Enter: Docker

Docker

% Big ldea: “Build, Ship, and Run App, Anywhere”
o Debug your app, not your environment
o Securely build and share any application, anywhere
o Accomplished by including everything in a container

'guL\P« EvaNS

@\)(b(K

H\e bug idea.: include EVERY dependenc‘s

Containers package
EVERY dependenccé
‘l'oge.-l-her

40 make sure this
Mogram will rvn on

your laptop, T'm going

10 send you every single
file on my com puter
2
exaggeration but

it's the basic idea

o container image is a tacball of a filesystem

Here's uhat's in a typical Rails app's container:

your app's libe + other Ubuntu 1g.04
code system libracies Nise 68
Rails + other
Rubs interpcete—

how images are buikt
0. stact with a base 08
l.install program + dependencie s
2. confiquce- it how you want

3. make a tarball of 4he
WHOLE FILESYSTEM

(+his is what ‘docker build' does)

running an imase

|. download +he tar ball
2. unpack i"’ into a 6i(ed'or5

3. Run a program and pretend
+hat dired‘o(s is its
whole filesystem

(thig is what ‘docker run' does\

imase_s let you “instel”
Programs reallﬂ easihaz

wow, T can get a
Postgres test database
ruaning in Y4S secoads!

Container Support on
OSes

CS 423 - University of lllinois

Wade Fagen-Ulmschneider
(Slides built from Adam Bates and Tianyin Xu previous work on CS 423.)

Containers are Build on Linux Utilities

* Linux Containers (LXC):
o chroot
o namespace
m PID, Network, User, IPC, uts, mount
o cgroups for HW isolation
o Security profiles and policies
o Apparmor, SELinux, Seccomp

Containers are Build on Linux Utilities

* Linux Containers (LXC):
o chroot
o namespace
m PID, Network, User, IPC, uts, mount
o cgroups for HW isolation
o Security profiles and policies
o Apparmor, SELinux, Seccomp

Containers are Build on Linux Utilities

% chroot changes the apparent root directory for a given process and
all of its children.
o An old idea! POSIX call dating back to 1979
o Ex: fusr/home/waf/myapp = /
m Process is no longer able to “see” below myapp directory!

* Not intended to defend against privileged attackers.
o With root access you can do all sorts of things to break out (like

chroot'ing again)

% Does not hide processes, network, etc!

Containers are Build on Linux Utilities

* Linux Containers (LXC):
o chroot
o namespace
m PID, Network, User, IPC, uts, mount
o cgroups for HW isolation
o Security profiles and policies
o Apparmor, SELinux, Seccomp

Namespaces

% namespaces are the key feature enabling containerization!
o Partition practically all OS functionalities so that different process
domains see different things

o Mount (mnt): Controls mount points

o Process ID (pid): Exposes a new set of process |IDs distinct from other namespaces
(i.e., the hosts)

o Network (net): Dedicated network stack per container; each interface present in
exactly one namespace at a time.

o IPC (inter-process comm.): Isolate processes from various methods of POSIX IPC

m No shared memory between containers!
o UTS: Allows the host to present different host/domain names to different containers.
o User ID (user) and cgroup namespace -- allows the container to think its root!

’S\)L\A EVANS
@bwr\(

namespo.ces

inside o container,

H\if\gs look. differert
1 Oﬂl\lﬁ see. Y

processes in ‘ps avx!

thats weird...

(X

commands that
will look. different

—» ps aux (less processes ?>

— mount 4 0F

- nefstat -tulpn

(different open pocts 1))
- hostname
.. and LOTS more

Why those commands
look. different:

> namespaces =

Imina oiffecent

PID name space so
‘ps auvx' shows differen
processes

Container

eve(i’) process has F
Kinds of namespaces

e ID)

Come up

+he. most

thece's o default

(“*host”) nome space

“OU“"SiA e o
container” jost

means " using the

defaolt namespaces”

processes can have
any combination

O'f’ nomespaeces

T'm using +he host
& network name space
bot My own mount

containes

namespace '

Q +his? more ot wizardzines.com

Containers are Build on Linux Utilities

* Linux Containers (LXC):
o chroot
o namespace
m PID, Network, User, IPC, uts, mount
o cgroups for HW isolation
o Security profiles and policies
o Apparmor, SELinux, Seccomp

Namespaces

% cgroups limit, track and isolate utilization of hardware resources

including CPU, memory, and disk.
o Important for ensuring QoS between customers! Protects against

bad neighbors

% Features:
o Resource limitation
Prioritization
Accounting (for billing customers!)
Control, e.g., freezing groups
The cgroup namespace prevents containers from viewing or modifying

their own group assignment...

O O O O

Containers are Build on Linux Utilities

* Linux Containers (LXC):
o chroot
o namespace
m PID, Network, User, IPC, uts, mount
o cgroups for HW isolation
o Security profiles and policies (Apparmor, SELinux, Seccomp)

Security

“Containers do not contain.”
- Dan Walsh (SELinux contributor)

Containers are Build on Linux Utilities

* It is real hard to prove that every feature of the operating system is
namespaced.
o /[sys? /proc? /dev? LKMs? kernel keyrings?
o Root access to any of these enables pwning the host

* Solution?

o Secure linux distributions (ex: SELinux) provide good support for
namespace labeling. Does not prevent against physical attacks
(ohysical security is part of security)!

o Much easier to express a correct isolation policy over a
coarse-grained namespace than, say, individual processes.

SoUA EvANS
@bork

seccomp- bpwc

all programs use
system calls

read 2000 bytes
@ from this file

Pfos"am
(here yoo got—0)

Linux

some programs have
Securi+3 vulnerobilities

T know f-Fmpeg

codecs can be
EXP‘O:‘}PJ bot T reall:j

need to process "H'\ese
untrosted videos ...

rare\3 vsed syscalls
can help an attocker

process. vm. read v u
d e of ‘f(OM
wnoAhee | reques+_ key

anothes Pf'oceSS
ffmpe eqy DEFINITELY doesn't

§ nee acc ess o read me

seccomp- RPF: make
Linux ron o Finy program
before every system call

)V reboot the computer!

process

the BPF ogram I was
swen fe‘r((ned 'False, /)
thats o no from me? —

Docker blocks dozens
of syscalls by defaolt

most programs
don't need those.
System calls so T

told Linux +o bloc

+hem for ou

Docker

from other programs '
2 ways +o block
Scary system calls

l. Limit o container's
capabilities

2.Use a seccomp -BPF
whi ’rehs'l'

Usua\\g people 0o both !

User Level process User space

Y
open system call Kernel space
Look up inode
7
error checks
]
LSM Module
DAC checks Policy Engine
¥ *OK with you?" Examine context
LSM hook |(—)- Does request pass policy?
¥ Yes or No Grant or deny
Complete request
lAccess
inode

Figure 1: LSM Hook Architecture

p EVANS

sue k. conTaiiners aren't magqic

These 15 lines of bash will start a container running the fish shell. T ry it!
(download this script at bit.ly/containers-arent-magic)

wget bit.ly/fish-container -0 fish.tar # 1. download the image
mkdir container-root; cd container-root f
tar —=xf ../rish.tar # 2. unpack image into a directory
cgroup_id="cgroup_$(shuf -i 1000-2000 -n 1)" # 3. generate random cgroup name
cgcreate -g "cpu,cpuacct,memory: $cgroup_id” # 4. make a cgroup &
cgset -r cpu.shares=512 "$cgroup_id" # set CPU/memory limits
cgset -r memory.limit_in_bytes=1000000000 \
"$cgroup_id" f#
cgexec -g "cpu,cpuacct,memory: $cgroup_id"” \ # 5. use the cgroup
unshare -fmuipn --mount-proc \ # 6. make + use some namespaces
chroot "$PWD" \ # 7. change root directory

/bin/sh -c¢ " f
/bin/mount -t proc proc /proc && f
hostname container-fun-times && f
/usr/bin/fish” #

8. use the right /proc
9. change the hostname
10. finally, start fish!

