
Virtual Machines

CS 423 - University of Illinois
Wade Fagen-Ulmschneider
(Slides built from Adam Bates and Tianyin Xu previous work on CS 423.)

Big Idea: The OS is an illusionist
★ So Far, the OS makes it appear that every process has:

○ exclusive, continuous access to the CPU,
○ a large, nearly infinite unbounded amount of RAM,

○ ...but secretly swaps the resources between many processes…

★ Do we really need more abstraction??

Big Idea: The OS is an illusionist

Hardware Platform
Virtualization

Running hardware
platform-specific binaries
on different hardware.

Operating System
Virtualization

Running guest operating
systems within a host
operating system environment
(VirtualBox)

Hardware Virtualization

Mobile development is full of
hardware virtualization to test mobile
apps in various environments.

The Entire Cloud: On Your Laptop

Virtualization
★ The goal of all virtualization is to map a virtual system onto a host

system:

○ All virtual states S can be represented on the host system as V(S)
○ For all sequence of translations between S1 ⇒ S2, there’s a

sequence of operations that map V(S1) ⇒ V(S2).

Key Interfaces to Virtualization
★ Application Level Interfaces (APIs)

○ ex: libc

★ Application Binary Interfaces (ABIs)
○ user-level instructions
○ system calls

★ Hardware-Software Interfaces
○ Instruction Set Architectures (ISAs)

★ In virtualization, a “machine” is any entity that provides an
interface:
○ Language Virtualization

■ Machine := Entity that provides the API

○ Process Virtualization
■ Machine := Entity that provides the ABI

○ System Virtualization
■ Machine := Entity that provides the ISA

A Virtual “Machine”

★ Language Virtualization
○ Machine := Entity that provides the API
○ Software := Compiler/Interpreter

■ Example: Java Virtual Machine (JVM)

★ Process Virtualization
○ Machine := Entity that provides the ABI
○ Software := Runtime

■ Example: Windows Subsystem for Linux (WSL)

★ System Virtualization
○ Machine := Entity that provides the ISA
○ Software := Virtual Machine Monitor

Process/Language
Virtual Machines

CS 423 - University of Illinois
Wade Fagen-Ulmschneider
(Slides built from Adam Bates and Tianyin Xu previous work on CS 423.)

★ Language Virtualization
○ Machine := Entity that provides the API
○ Software := Compiler/Interpreter

■ Example: Java Virtual Machine (JVM)

★ Process Virtualization
○ Machine := Entity that provides the ABI
○ Software := Runtime

■ Example: Windows Subsystem for Linux (WSL)

★ System Virtualization
○ Machine := Entity that provides the ISA
○ Software := Virtual Machine Monitor

Example 1: Emulation
★ Emulation allows one ABI to run on top of another:

○ Ex: Early emulation focused on running Windows apps (IA-32)
on top of MacOS (PowerPC).

■ Specifically: Running an app compiled for IA-32/Windows on MacOS/PowerPC.
■ Modern emulation often focuses on virtualizing phone interfaces (ARMv8).

○ Approach 1: Interpreters -- Read one instruction at a time,
update host state using a [set] of host instructions.

○ Approach 2: Translation -- Translate the binary instructions to
host instructions in one step; run the translated binary.

Example 2: Binary Optimization
★ Optimizations usually involve running an ABI on top of itself for

purposes of analysis/profiling.

○ Ex: valgrind is a utility that replaces all memory-related
library calls to profile memory usage.

○ Allows the implementation of optimizations found through
runtime-execution.

Example 3: Language Virtual Machines
★ Language VMs involve implementing a single API on top of a set

of diverse ABIs.

○ Ex: javac compiles Java code to an intermediate form (Java
Source Code ⇒ Java Bytecode)

○ Runtime interpreters interpret the bytecode on different ABIs.

○ Not just Java; Microsoft has the “Common Language Interface
(CLI)” for the .NET languages; and others exist.

System Virtual
Machines

CS 423 - University of Illinois
Wade Fagen-Ulmschneider
(Slides built from Adam Bates and Tianyin Xu previous work on CS 423.)

★ Language Virtualization
○ Machine := Entity that provides the API
○ Software := Compiler/Interpreter

■ Example: Java Virtual Machine (JVM)

★ Process Virtualization
○ Machine := Entity that provides the ABI
○ Software := Runtime

■ Example: Windows Subsystem for Linux (WSL)

★ System Virtualization
○ Machine := Entity that provides the ISA
○ Software := Virtual Machine Monitor

System VMs
★ Implement a VMM (ISA emulation) on bare hardware:

○ Most efficient,
○ Must support hardware emulation (drivers), and
○ Replaces any OS hosted on the bare hardware.

★ Implement a VMM on top of a host OS:
○ Less efficient,
○ Leverages the OS drivers and hardware abstractions, and
○ Easy to install on top of the host OS.

System VMs
★ Implement a VMM (ISA emulation) on bare hardware:

○ Most efficient,
○ Must support hardware emulation (drivers), and
○ Replaces any OS hosted on the bare hardware.

★ Implement a VMM on top of a host OS:
○ Less efficient,
○ Leverages the OS drivers and hardware abstractions, and
○ Easy to install on top of the host OS.

Type 1 Hypervisor
(Runs at “Ring -1”; need for
hardware support.)

Type 2 Hypervisor
(Runs at “Ring 1” on x64; less dependent
on specific hardware support.)

System VMs

Emulator Design

CS 423 - University of Illinois
Wade Fagen-Ulmschneider
(Slides built from Adam Bates and Tianyin Xu previous work on CS 423.)

Emulator Design
★ Goal: Emulate guest ISA on a host ISA

○ Need: Simulations of guest data structures
■ Guest memory layout (stack, heap, etc)
■ Guest CPU layout (registers, flags, etc)

○ Need: Simulation of binary instructions

Emulator Design: Binary Instructions
★ Need: Simulation of binary instructions
★ Solution: Basic interpretation could switch on opcode:

instruction = sourceCode[PC]
opcode = extract_opcode(instruction)
switch (opcode) {
 case OPCODE1: emulate_OPCODE1(); break;
 case OPCODE2: emulate_OPCODE2(); break;
 /* ... */
}

Emulator Design: Binary Instructions
★ Need: Simulation of binary instructions
★ Solution: Use functors (function pointers) to interpret opcode

instruction = sourceCode[PC]
opcode = extract_opcode(instruction)
emulation = GUEST_TO_HOST_CODE[opcode]
emulation(instruction)

Ex: MIPS

Ex: MIPS

Opcode Extraction
★ Opcodes often have options and may rely on combining several

bits ranges.

★ Option 1 - Emulate: Program the logic of the opcode in software
(may be very slow/complex, one opcode could have many paths).

★ Option 2 - Pre-Decoding: Pre-extract opcode+operand
combinations for all instructions and create separate segments
for various operands.

Why not direct translation?
Q: Why not just read the source binary and translate it statically one
instruction at a time to a target binary?

Why not direct translation?
Q: Why not just read the source binary and translate it statically one
instruction at a time to a target binary?

1. Code discovery and binary translation:
a. How to tell whether something is code or data?
b. We encounter a jump instruction: Is word after the jump instruction code

or data?

2. Code location problem:
a. How to map source program counter to target program counter?
b. Can we do this without having a table as long as the program for

instruction-by-instruction mapping?

