-

CS 423
Operating System Design:
MP2 Walkthrough

Professor Adam Bates
Spring 2018

MP2: Rate-Monotonic Scheduling _|[

* MP2 will be out at the end of the week

* We are currently grading MP |

e Reminder

* Please do not touch your VMs until MP2 is out

CS 423: Operating Systems Design

‘ A Note About Piazza I

* “My code Is not running, why?" is not very helpful

* Be more specific when dealing with failures so we can help

* Use private posts if you are not comfortable
sharing detalls of your implementation

* Or office hours

* Be careful not to remove /var/log/sssd as
this 1s will brick authentication

CS 423: Operating Systems Design 3

‘ Purpose of MP2

* Understand real time scheduling concepts

* Design a real time schedule module in the Linux
kernel

* Learn how to use the kernel scheduling API, timer,
Drocfs

* Test your scheduler by implementation a user
level application

|

CS 423: Operating Systems Design

‘ Reuse of MP |

* MPI was focused on getting you familiar with
kernel programming

e (Code/Makefile from MP| can be reused for MP2

* MP2 is aimed at developing useful kernel code

* Develop a scheduler as a kernel module
* Implement a task admission control policy

* Use procfs to communicate with user programs

CS 423: Operating Systems Design 5

‘ Introduction _|[

* Real-time systems have requirements in terms of
response time and predictability

* Think video survelllance systems

* We will be dealing with periodic tasks
* (Constant period

* (Constant running time

* We will assume tasks are independent

CS 423: Operating Systems Design 6

‘ Periodic Tasks Model

* Liu and Layland [197/3] model, each task ¢ has
* Period Pli
* Deadline Ddi

e Runtime (Y7

Deadline Processing

\\\‘ Time
—

Task

=
Time

Period

CS 423: Operating Systems Design 7

Rate Monotonic Scheduler (RMS) _|[

* A static scheduler has complete information about
all the iIncoming tasks

* Arrival time, deadline, runtime, etc.

* RMS assigns higher priority for tasks with higher
rate/shorter period

* [t always picks the task with the highest priority

* [tis preemptive

CS 423: Operating Systems Design 8

‘ Optimality of RMS

* RMS is optimal for hard-real time systems

* |t RMS cannot schedule 1t, then no other algorithm
can!

* |t any other scheduler algorithm can scheduler a
set of tasks, then RMS can do it too!

CS 423: Operating Systems Design

‘ MP2 Overview _|[

* We will implement RMS with an admission control
policy as a kernel module

* The scheduler provides the following interface
* Registration: save process info like pid, P, D, etc.
* Yield: process notifies RMS that is has completed its period

* De-Registration: process notifies RMS that it has completed
all its tasks

* We will use procfs to communicate between the
modules and the processes

CS 423: Operating Systems Design 10

‘ Admission Control

* We only register a process If it passes admission
control

* [he module will answer this question every time

* (Can the new set of processes still be a scheduled on a single
processor ?

* Yes Iff Z % < 0.693

icT ~ ¢

* Assume always that C; < P

CS 423: Operating Systems Design 11

Admission Control

* We only register a process If it passes admission
control

Recall that floating point operations are very
expensive in the kernel. You should NOT use
them.

Instead use Fixed-Point arithmetic

* Assume always that C; < P,

CS 423: Operating Systems Design

MP2 Building Blocks

2. List of Tasks MP2Read Proc Admission Control
| Callback
1. Register Task P2 Write Proc

Callback

Linked
List
(Critical Section)
3. YIELD YIELD
Function Handler

Dispatching
4. De-Register Thread
Task

Scheduler

Kernel Space AP

User Space

_____________________________________ Linux

\ Scheduler /

CS 423: Operating Systems Design 13

MP2 User Process Behavior

void main (void)
{

//Bxes filesyshem
REGISTER(PID, Period, ProcessTime) ;

//Proc filesvstem: Verify the process was admitted
1ist=READ STATUS () ;

if ('process in the list) exit(l):;

YIELD (PID) ; //Rroc filesystenm
//this is the real-time loop

while (exist jobs)

{
//wakeup_time=tO—g@@@&m@gﬁ@@g() and factorial computation

do_job() ;

YIELD(PID); //Brog filesystem

}
UNREGISTER(PID) ; //Progc filesystem

CS 423: Operating Systems Design 14

MP2 User Process Behavior

void main (void)
{
//Rres filesysken
#REGISTER(PID, Period, ProcessTime) ;

//Proc filesvstem: Verify the process was admitted
list=READ STATUS() ;
if ('process in the list) exit(l):;

YIELD (PID) ; //Rroc filesystenm
//this is the real-time loop

while (exist jobs)

{
//wakeup_time=tO—g@@@&m@gﬁ@@g() and factorial computation

do_job () ;
YIELD(PID); //Brog filesystem

}
UNREGISTER(PID) ; //Progc filesystem

CS 423: Operating Systems Design 15

MP2 User Process Behavior

void main (void)
{

//Bxes filesyshem
REGISTER(PID, Period, ProcessTime) ;

//Proc filesvstem: Verify the process was admitted
sl 1ist=READ STATUS () ;

if ('process in the list) exit(l):;

YIELD (PID) ; //Rroc filesystenm
//this is the real-time loop

while (exist jobs)

{
//wakeup_time=tO—g@@@&m@gﬁ@@g() and factorial computation

do_job () ;
YIELD(PID); //Brog filesystem

}
UNREGISTER(PID) ; //Progc filesystem

CS 423: Operating Systems Design 16

MP2 User Process Behavior

void main (void)
{

//Bxes filesyshem
REGISTER(PID, Period, ProcessTime) ;

//Proc filesvstem: Verify the process was admitted
1ist=READ STATUS () ;

#if ('process in the list) exit(l) ;

YIELD (PID) ; //Rroc filesystenm
//this is the real-time loop

while (exist jobs)

{
//wakeup_time=tO—g@@@&m@gﬁ@@g() and factorial computation

do_job() ;
YIELD(PID); //Brog filesystem

}
UNREGISTER(PID) ; //Progc filesystem

CS 423: Operating Systems Design 17

MP2 User Process Behavior

void main (void)
{

//Bxes filesyshem
REGISTER(PID, Period, ProcessTime) ;

//Proc filesvstem: Verify the process was admitted
1ist=READ STATUS () ;

if ('process in the list) exit(l):;

mssl- Y IELD (PID) ; //Broc filesysten
//this is the real-time loop

while (exist jobs)

{
//wakeup_time=tO—g@@@&m@gﬁ@@g() and factorial computation

do_job () ;
YIELD(PID); //Brog filesystem

}
UNREGISTER(PID) ; //Progc filesystem

CS 423: Operating Systems Design 18

MP2 Dispatching Thread

2. List of Tasks MP2Read Proc Admission Control
| Callback
1. Register Task P2 Write Proc

Callback

Linked
List
(Critical Section)
3. YIELD YIELD
Function Handler

Dispatching
4. De-Register Thread
Task

Scheduler

Kernel Space AP

User Space

Linux
Scheduler

CS 423: Operating Systems Design 19

MP2 User Process Behavior

void main (void)
{

//Bxes filesyshem
REGISTER(PID, Period, ProcessTime) ;

//Proc filesvstem: Verify the process was admitted
1ist=READ STATUS () ;

if ('process in the list) exit(l):;

YIELD (PID) ; //Rroc filesystenm
//this is the real-time loop

while (exist jobs)

{
//wakeup_time=tO—g@@@&m@gﬁ@@g() and factorial computation

do_job() ;

YIELD(PID); //Brog filesystem

}
UNREGISTER(PID) ; //Progc filesystem

CS 423: Operating Systems Design 20

MP2 User Process Behavior

void main (void)
{

//Bxes filesyshem
REGISTER(PID, Period, ProcessTime) ;

//Proc filesvstem: Verify the process was admitted
1ist=READ STATUS () ;

if ('process in the list) exit(l):;

YIELD (PID) ; //Rroc filesystenm
//this is the real-time loop

while (exist jobs)

{
//wakeup_time=tO—g@@@&m@gﬁ@@g() and factorial computation

do_job() ;

e YIELD(PID); //Brog filesysktem

}
UNREGISTER(PID) ; //Progc filesystem

CS 423: Operating Systems Design 21

MP2 User Process Behavior

void main (void)
{

//Bxes filesyshem
REGISTER(PID, Period, ProcessTime) ;

//Proc filesvstem: Verify the process was admitted
1ist=READ STATUS () ;

if ('process in the list) exit(l):;

YIELD (PID) ; //Rroc filesystenm
//this is the real-time loop

while (exist jobs)

{
//wakeup_time=tO—g@@@&m@gﬁ@@g() and factorial computation

do_job() ;

YIELD(PID); //Brog filesystem

| }
—> UNREGISTER(PID) ; //Brog filssystenm

'}

CS 423: Operating Systems Design 22

‘ MP2 Process State

* A process iIn MP2 can be in one of three states
|. READY: a new job is ready to be scheduled
2. RUNNING: a job is currently running and using the CPU

3. SLEEPING: job has finished execution and process is waiting
for the next period

* A job is not allowed to run before its appropriate
period

CS 423: Operating Systems Design 23

MP2 Process Control Block

* PCBis defined by task struct

* PCB Is manager by a circular doubly linked list

* Maintain pointer to current running state

task_truct task_truct task_truct
list_head W list_head - list_head

prev prev

CS 423: Operating Systems Design

24

‘ MP2 Extending the PCB

* Extend PCB to hold MP2-specific information,
example,

struct mp2Z2 task struct

{
struct task struct *task;
struct list head task node;
struct timer list task timer;

unsigned int task state;
uinto4 t next period;

unsigned int pid;

unsigned long relative period;
unsigned long slice;

1 ¥

CS 423: Operating Systems Design

25

MP2 Scheduling Logic

* We will use a kemel thread to handle the
scheduling logic

* |t will handle context switches as needed

* [here are two cases In which a context switch Is
needed

|. Received a YIELD message from an application

2. The wakeup timer of a process has expired, i.e., its new
period has started

CS 423: Operating Systems Design

26

MP2 Scheduling Logic

Yield handler

Update timer;
State = sleep;

Wake up
scheduler;

Sleep;

CS 423: Operating Systems Design

scheduler

Select highest
priority task
(smallest period)

State = running

Wake up process

sleep

Timer interrupt

State = ready

Wake up scheduler

27

MP2 Context Switching

* We will use the kernel scheduling AP
* schedule(): tniggerthe kernel scheduler
¢ wake up process (struct task struct ¥*)

* sched setscheduler(): setscheduling parameters

* FFO for real time scheduling, NORMAL for regular processes, etc.
® set current state()

e set task state()

CS 423: Operating Systems Design 28

‘ MP2 Scheduler APl Example

* [o sleep and trnigger a context switch

set current state(TASK INTERRUPTIBLE);

schedule();

* [o wake up a process

struct task struct * sleeping task;
wake up process(sleeping task);

CS 423: Operating Systems Design 29

‘ MP2 A Note About Kthreads _|[

* You will need to explicitly put the kernel thread to
sleep when you're done with your work

* Otherwise it will keep running forever

* You also need to explicitly check for signals
* Checkif should stop working

® kthread should stop()

CS 423: Operating Systems Design 30

MP2 Timer and Scheduler

2. List of Tasks MP2Read Proc Admission Control
| Callback

1. Register Task P2 Write Proc
Callback

Linked
List
(Critical Section)
3. YIELD YIELD
Function Handler

Dispatching
4. De-Register Thread
Task
T
User Space : Kernel Space icgeduler
|
i _____________________________________ Linux B OttO m
Top Half Scheduler Half

CS 423: Operating Systems Design 31

‘ MP?2 Final Notes

* Develop things incrementally, follow the mp2
description

* [est things one at a time
* Use fixed point arithmetic

* Use global variables for persistent state

* Remember to cleanup everything

* Fallure to do so may not allow you to insert your module
again

CS 423: Operating Systems Design 32

