
CS 423: Operating Systems Design

Professor Adam Bates
Spring 2018

CS 423�
Operating System Design:

MP2 Walkthrough

1!



CS 423: Operating Systems Design

MP2: Rate-Monotonic Scheduling

•  MP2 will be out at the end of the week

•  We are currently grading MP1

•  Reminder
•  Please do not touch your VMs until MP2 is out

2!



CS 423: Operating Systems Design

A Note About Piazza

•  “My code is not running, why?” is not very helpful 
•  Be more specific when dealing with failures so we can help

•  Use private posts if you are not comfortable 
sharing details of your implementation
•  Or office hours

•  Be careful not to remove /var/log/sssd as 
this is will brick authentication

3!



CS 423: Operating Systems Design

Purpose of MP2

•  Understand real time scheduling concepts

•  Design a real time schedule module in the Linux 
kernel 

•  Learn how to use the kernel scheduling API, timer, 
procfs

•  Test your scheduler by implementation a user 
level application 

4!



CS 423: Operating Systems Design

Reuse of MP1

•  MP1 was focused on getting you familiar with 
kernel programming
•  Code/Makefile from MP1 can be reused for MP2

•  MP2 is aimed at developing useful kernel code
•  Develop a scheduler as a kernel module

•  Implement a task admission control policy

•  Use procfs to communicate with user programs

5!



CS 423: Operating Systems Design

Introduction

•  Real-time systems have requirements in terms of 
response time and predictability
•  Think video surveillance systems

•  We will be dealing with periodic tasks 
•  Constant period

•  Constant running time

•  We will assume tasks are independent

6!



CS 423: Operating Systems Design

Periodic Tasks Model

•  Liu and Layland [1973] model, each task 𝑖 has
•  Period ​𝑃↓𝑖 

•  Deadline ​𝐷↓𝑖 

•  Runtime ​𝐶↓𝑖 

7!



CS 423: Operating Systems Design

Rate Monotonic Scheduler (RMS)

•  A static scheduler has complete information about 
all the incoming tasks
•  Arrival time, deadline, runtime, etc.

•  RMS assigns higher priority for tasks with higher 
rate/shorter period 
•  It always picks the task with the highest priority

•  It is preemptive 

8!



CS 423: Operating Systems Design

Optimality of RMS

•  RMS is optimal for hard-real time systems

•  If RMS cannot schedule it, then no other algorithm 
can!

•  If any other scheduler algorithm can scheduler a 
set of tasks, then RMS can do it too!

9!



CS 423: Operating Systems Design

MP2 Overview

•  We will implement RMS with an admission control 
policy as a kernel module

•  The scheduler provides the following interface
•  Registration: save process info like pid, P, D, etc.

•  Yield: process notifies RMS that is has completed its period

•  De-Registration: process notifies RMS that it has completed 
all its tasks

•  We will use procfs to communicate between the 
modules and the processes

10!



CS 423: Operating Systems Design

Admission Control

•  We only register a process if it passes admission 
control

•  The module will answer this question every time
•  Can the new set of processes still be a scheduled on a single 

processor ?

•  Yes iff 

•  Assume always that 

X

i2T

Ci

Pi
 0.693

Ci < Pi

11!



CS 423: Operating Systems Design

Admission Control

•  We only register a process if it passes admission 
control

•  The module will answer this question every time
•  Can the new set of processes still be a scheduled on a single 

processor ?

•  Yes iff 

•  Assume always that 

X

i2T

Ci

Pi
 0.693

Ci < Pi

Recall that floating point operations are very 
expensive in the kernel. You should NOT use 

them.!
Instead use Fixed-Point arithmetic!

12!



CS 423: Operating Systems Design

MP2 Building Blocks

13!



CS 423: Operating Systems Design

MP2 User Process Behavior

14!



CS 423: Operating Systems Design

MP2 User Process Behavior

15!



CS 423: Operating Systems Design

MP2 User Process Behavior

16!



CS 423: Operating Systems Design

MP2 User Process Behavior

17!



CS 423: Operating Systems Design

MP2 User Process Behavior

18!



CS 423: Operating Systems Design

MP2 Dispatching Thread

19!



CS 423: Operating Systems Design

MP2 User Process Behavior

20!



CS 423: Operating Systems Design

MP2 User Process Behavior

21!



CS 423: Operating Systems Design

MP2 User Process Behavior

22!



CS 423: Operating Systems Design

MP2 Process State

•  A process in MP2 can be in one of three states
1.  READY: a new job is ready to be scheduled

2.  RUNNING: a job is currently running and using the CPU

3.  SLEEPING: job has finished execution and process is waiting 
for the next period

•  A job is not allowed to run before its appropriate 
period

23!



CS 423: Operating Systems Design

MP2 Process Control Block

•  PCB is defined by task_struct

•  PCB is manager by a circular doubly linked list

•  Maintain pointer to current running state
task_truct

state

pid
...

list_head

next

prev

...

task_truct

state

pid
...

list_head

next

prev

...

task_truct

state

pid
...

list_head

next

prev

...

24!



CS 423: Operating Systems Design

MP2 Extending the PCB

•  Extend PCB to hold MP2-specific information, 
example,

25!



CS 423: Operating Systems Design

MP2 Scheduling Logic

•  We will use a kernel thread to handle the 
scheduling logic

•  It will handle context switches as needed

•  There are two cases in which a context switch is 
needed
1.  Received a YIELD message from an application 

2.  The wakeup timer of a process has expired, i.e., its new 
period has started

26!



CS 423: Operating Systems Design

MP2 Scheduling Logic

• Update	timer;

• State	=	sleep;

• Wake	up	
scheduler;

• Sleep;

Yield	handler

• Select	highest			
priority	task	
(smallest	period)

• 		State	=	running

• 		Wake	up	process

• 		sleep

scheduler

• State	=	ready

• Wake	up	scheduler

Timer	interrupt

27!



CS 423: Operating Systems Design

MP2 Context Switching

•  We will use the kernel scheduling API
•  schedule(): trigger the kernel scheduler

•  wake_up_process (struct task_struct *)
•  sched_setscheduler(): set scheduling parameters

•  FIFO for real time scheduling, NORMAL for regular processes, etc.

•  set_current_state()
•  set_task_state()

28!



CS 423: Operating Systems Design

MP2 Scheduler API Example

•  To sleep and trigger a context switch
set_current_state(TASK_INTERRUPTIBLE);

schedule();

•  To wake up a process
struct task_struct * sleeping_task;

...

wake_up_process(sleeping_task);

29!



CS 423: Operating Systems Design

MP2 A Note About Kthreads

•  You will need to explicitly put the kernel thread to 
sleep when you’re done with your work
•  Otherwise it will keep running forever

•  You also need to explicitly check for signals
•  Check if should stop working

•  kthread_should_stop()

30!



CS 423: Operating Systems Design

MP2 Timer and Scheduler

Top Half!
Bottom 

Half!
31!



CS 423: Operating Systems Design

MP2 Final Notes

•  Develop things incrementally, follow the mp2 
description 

•  Test things one at a time

•  Use fixed point arithmetic

•  Use global variables for persistent state

•  Remember to cleanup everything
•  Failure to do so may not allow you to insert your module 

again

32!


