
LINUX INTERRUPTS AND
SYSTEM CALLS

Shiguang Wang
Feb 12th, 2014

1

OBTAINING KERNEL SOURCE

http://www.kernel.org the latest stable kernel 3.13.2

Untar bzip2 tarball: tar -jxvf linux-x.y.z.tar.bz2

Untar GNU zip tarball: tar -zxvf linux-x.y.z.tar.gz

*Now the tar command can automatically identify the
compressing method, so simply tar -xvf [tarball]

http://www.kernel.org
http://www.kernel.org

KERNEL SOURCE TREE

Directory Description
arch Architecture-specific source
crypto Crypto API
Documentation Kernel source documentation
drivers Device drivers
fs The VFS and the individual file systems
include Kernel headers
init Kernel boot and initialization
ipc Interprocess communication code
kernel Core subsystems, such as the scheduler
lib Helper routines
mm Memory management subsystem and the VM
net Networking subsystem
scripts Scripts used to build the kernel
security Linux Security Module
sound Sound subsystem
usr Early user-space code (called initramfs)

COMPILING KERNEL

cd into the top source directory

make oldconfig

make

make modules

Must specify what kind of kernel you want

Configuration targets, like xconfig, menuconfig, oldconfig

oldconfig means “the same as last time”

Asking for “everything” may not be able to boot at all!

BOOTING A NEW KERNEL

make modules_install

At this point, you should find /lib/modules/[version] in your system

make install

This command will create the corresponding files in /boot

vmlinuz-[version] -- the actual kernel

System.map-[version] -- the symbols exported by the kernel

initrd.img-[version] -- initrd image is temporary root file system used during boot process

config-[version] -- the kernel configuration file

grub.cfg will be updated automatically!!!

reboot and use $ uname -r to see the updated kernel version

DUAL MODE OF OPERATION

Why? -- Need for protection

Kernel privileged, cannot trust user processes

User processes may be malicious or buggy

Must protect

User processes from one another

Kernel from user processes

HARDWARE MECHANISMS FOR
PROTECTION

Memory protection

Segmentation and paging

E.g. kernel sets segment/page table

Timer interrupt

Kernel periodically gets back control

Result -- Dual mode of operation

Privileged operations in kernel mode

Non-privileged operations in user mode

x86 PROTECTION MODES

Four modes (0-3), but often only 0 & 3 used

Kernel mode: 0

User mode: 3

Segment has Descriptor Privilege Level (DPL)

Current Privilege Level (CPL) = current code segment’s DPL

Can only access data segments when CPL <= DPL

SYSTEM CALLS

A set of interfaces that user-space processes interact with the
system

Give applications access to hardware and other OS resources

Applications issues requests, the kernel fulfilling them

A mechanism for OS to regulate the behavior of applications

Providing a stable system, avoiding a big mess

A MIDDLE LAYER
BTW HARDWARE AND USER-SPACE PROCESSES

Purposes

Abstracted hardware interface for user-space

E.g., reading or writing from a file

Ensure system security and stability

E.g., preventing app. from incorrectly using hardware

Virtualized system provided to processes

E.g., multitasking and virtual memory

System calls are only legal entry point into the kernel other than exceptions
and traps

Other interfaces, such as /proc, ultimately accessed via system calls

APIS, POSIX, AND C LIBRARY

Applications uses APIs not system calls directly

Benefits of no direct correlation

API can be implemented as a system call,
through multiple system calls, or without
system call

Same API exist on multiple systems with same
interface, but different implementations of itself

APIS, POSIX, AND C LIBRARY

POSIX standard

Comprises a series of standards from the IEEE*

Provides a portable OS standard roughly based on Unix

On most Unix systems, the POSIX-defined API calls have a strong
correlation to the system calls

On the other hand, some systems that are far from Unix, such as
Windows NT, offer POSIX-compatible libraries

*IEEE (eye-triple-E) is the Institute of Electrical and Electronics Engineers. It is a nonprofit professional association involved in numerous technical
areas and responsible for many important standards, such as POSIX. For more information, visit http://www.ieee.org

http://www.ieee.org
http://www.ieee.org

APIS, POSIX, AND C LIBRARY

Interface provided in part by the C library

Wrapped by other programming languages

“provide mechanism, not policy”

System calls exist to provide a specific function in a very
abstract sense

SYSCALLS

System calls in Linux often called syscalls

Typically accessed via function calls

Syscalls return value of the long type

Negative return usually denotes an error

Zero usually denotes a sign of success

Write error code into the global errno variable

The error code can be translated to human-readable via perror()

THE getpid() SYSCALL

Defined to return an integer of current process’s PID

The implementation of this syscall is simple:

asmlinkage is a required modifier for all system calls

Syscalls are prefixed with sys_

asmlinkage long sys_getpid(void)
{
 return current->tgid;
}

SYSCALL NUMBERS

In Linux, each syscall is assigned a syscall number

Unique number used to reference a specific syscall

User-space process refer to the syscall by number

Once assigned, the syscall number cannot change

Likewise, if a syscall is removed, its number cannot be recycled

sys_call_table

A list of all registered syscalls

Architecture dependent and typically defined in entry.S, for x86 in
/arch/i386/kernel

DENOTE THE CORRECT SYSCALL

Enter the kernel in the same manner for all system calls

The syscall number must be passed to the kernel

via the eax register

The system_call() function checks the validity of the syscall number

Comparing to NR_syscalls

If larger than or equal to NR_syscalls, returns -ENOSYS

Otherwise, invoke: call *sys_call_table(, %eax, 4)

INVOKING SYSCALL HANDLER
AND EXECUTING A SYSCALL

SYSCALL HANDLER

Software interrupt to signal the kernel

Incur an exception, then system will switch to kernel mode, and execute the
exception handler

Exception handler is actually syscall handler

Defined software interrupt on x86 is int $0x80

switch to kernel mode

execute the syscall handler system_call()

Architecture dependent and typically implemented in assembly in entry.S

http://www.cs.dartmouth.edu/~sergey/cs108/rootkits/entry.S

http://www.cs.dartmouth.edu/~sergey/cs108/rootkits/entry.S
http://www.cs.dartmouth.edu/~sergey/cs108/rootkits/entry.S

SYSCALL IMPLEMENTATION

Adding a new syscall to Linux is easy

Designing and implementing a syscall is hard!

SYSCALL IMPLEMENTATION

Steps in implementing a syscall

Define its purpose -- What will it do?

The syscall should have exactly one purpose

Multiplexing syscalls is discouraged in Linux

Clean and simple interface

With smallest number of arguments

The semantics and behavior of a syscall musts not change

Designing with an eye toward the future

Write a system call

Realize the need for portability and robustness, not just today but in the future

The basic Unix system calls have survived the test of time

-Unix motto

“Provide mechanism, not policy.”

SYSCALL IMPLEMENTATION

Verifying the Parameters

Syscalls must carefully verify all their parameters

File I/O syscalls must check whether the file descriptor is
valid

Process-related functions must check whether the provided
PID is valid.

Invalid input is dangerous, e.g. access a protected memory
space in kernel by passing an unchecked pointer

SYSCALL IMPLEMENTATION

Two methods for performing the desired copy to and from user-space

copy_to_user(), with parameters:

The destination memory address in the process’s address space

The source pointer in the kernel-space

The size in bytes of the data to copy

copy_from_user(), analogous to the above:

Read from the second parameter into the first parameter the
number of bytes specified in the third parameter.

A BAD EXAMPLE

/*
 * silly_copy - utterly worthless syscall that copies the len bytes from
 * 'src' to 'dst' using the kernel as an intermediary in the copy for no
 * good reason. But it makes for a good example!
 */
asmlinkage long sys_silly_copy(unsigned long *src,
 unsigned long *dst,
 unsigned long len)
{
 unsigned long buf;

 /* fail if the kernel wordsize and user wordsize do not match */
 if (len != sizeof(buf))
 return -EINVAL;

 /* copy src, which is in the user's address space, into buf */
 if (copy_from_user(&buf, src, len))
 return -EFAULT;

 /* copy buf into dst, which is in the user's address space */
 if (copy_to_user(dst, &buf, len))
 return -EFAULT;

 /* return amount of data copied */
 return len;
}

CHECK FOR VALID PERMISSION

Older version of Linux, user suser()

Merely checked whether a user was root or not

New system allows specific access checks on specific resources

http://www.cs.fsu.edu/~baker/devices/lxr/http/source/linux/include/linux/capability.h

asmlinkage long sys_am_i_popular (void)
{
 /* check whether the user possesses the CAP_SYS_NICE capability */
 if (!capable(CAP_SYS_NICE))
 return EPERM;

 /* return zero for success */
 return 0;
}

http://www.cs.fsu.edu/~baker/devices/lxr/http/source/linux/include/linux/capability.h
http://www.cs.fsu.edu/~baker/devices/lxr/http/source/linux/include/linux/capability.h

FINAL STEPS IN BINDING A SYSCALL

After a system call is written, it is trivial to register it as an official
system call:

First, add an entry to the end of the system call table

Second, for each architecture supported, the syscall number
needs to be defined in <asm/unistd.h>

Third, the syscall needs to be compiled into the kernel image
(as opposed to compiled as a module)

This can be as simple as putting the system call in a relevant
file in kernel/, such as sys.c

EXAMPLE OF IMPLEMENTING
A SYSCALL foo()

First, add sys_foo() to the system call table in entry.S

http://www.cs.dartmouth.edu/~sergey/cs108/rootkits/entry.S

ENTRY(sys_call_table)
 .long sys_restart_syscall /* 0 */
 .long sys_exit
 .long sys_fork
 .long sys_read
 .long sys_write
 .long sys_open /* 5 */

 ...

 .long sys_mq_unlink
 .long sys_mq_timedsend
 .long sys_mq_timedreceive /* 280 */
 .long sys_mq_notify
 .long sys_mq_getsetattr
 .long sys_foo /* 283 */

http://www.cs.dartmouth.edu/~sergey/cs108/rootkits/entry.S
http://www.cs.dartmouth.edu/~sergey/cs108/rootkits/entry.S

EXAMPLE OF IMPLEMENTING
A SYSCALL foo()

Next, the system call number is added to <asm/unistd.h>

http://www.cs.fsu.edu/~baker/devices/lxr/http/source/linux/arch/arm/include/asm/
unistd.h

/*
 * This file contains the system call numbers.
 */

#define __NR_restart_syscall 0
#define __NR_exit 1
#define __NR_fork 2
#define __NR_read 3
#define __NR_write 4
#define __NR_open 5

...
#define __NR_mq_unlink 278
#define __NR_mq_timedsend 279
#define __NR_mq_timedreceive 280
#define __NR_mq_notify 281
#define __NR_mq_getsetattr 282
#define __NR_foo 283

http://www.cs.fsu.edu/~baker/devices/lxr/http/source/linux/arch/arm/include/asm/unistd.h
http://www.cs.fsu.edu/~baker/devices/lxr/http/source/linux/arch/arm/include/asm/unistd.h
http://www.cs.fsu.edu/~baker/devices/lxr/http/source/linux/arch/arm/include/asm/unistd.h
http://www.cs.fsu.edu/~baker/devices/lxr/http/source/linux/arch/arm/include/asm/unistd.h
http://www.cs.fsu.edu/~baker/devices/lxr/http/source/linux/arch/arm/include/asm/unistd.h
http://www.cs.fsu.edu/~baker/devices/lxr/http/source/linux/arch/arm/include/asm/unistd.h
http://www.cs.fsu.edu/~baker/devices/lxr/http/source/linux/arch/arm/include/asm/unistd.h
http://www.cs.fsu.edu/~baker/devices/lxr/http/source/linux/arch/arm/include/asm/unistd.h
http://www.cs.fsu.edu/~baker/devices/lxr/http/source/linux/arch/arm/include/asm/unistd.h
http://www.cs.fsu.edu/~baker/devices/lxr/http/source/linux/arch/arm/include/asm/unistd.h
http://www.cs.fsu.edu/~baker/devices/lxr/http/source/linux/arch/arm/include/asm/unistd.h
http://www.cs.fsu.edu/~baker/devices/lxr/http/source/linux/arch/arm/include/asm/unistd.h
http://www.cs.fsu.edu/~baker/devices/lxr/http/source/linux/arch/arm/include/asm/unistd.h
http://www.cs.fsu.edu/~baker/devices/lxr/http/source/linux/arch/arm/include/asm/unistd.h
http://www.cs.fsu.edu/~baker/devices/lxr/http/source/linux/arch/arm/include/asm/unistd.h
http://www.cs.fsu.edu/~baker/devices/lxr/http/source/linux/arch/arm/include/asm/unistd.h
http://www.cs.fsu.edu/~baker/devices/lxr/http/source/linux/arch/arm/include/asm/unistd.h
http://www.cs.fsu.edu/~baker/devices/lxr/http/source/linux/arch/arm/include/asm/unistd.h
http://www.cs.fsu.edu/~baker/devices/lxr/http/source/linux/arch/arm/include/asm/unistd.h
http://www.cs.fsu.edu/~baker/devices/lxr/http/source/linux/arch/arm/include/asm/unistd.h
http://www.cs.fsu.edu/~baker/devices/lxr/http/source/linux/arch/arm/include/asm/unistd.h
http://www.cs.fsu.edu/~baker/devices/lxr/http/source/linux/arch/arm/include/asm/unistd.h

EXAMPLE OF IMPLEMENTING
A SYSCALL foo()

Finally, the actual foo() system call is implemented in kernel/sys.c

You should put it wherever the function is most relevant

kernel/sys.c is home to miscellaneous system calls

E.g., if the function is related to scheduling, you could put it in
kernel/sched.c

#include <asm/thread_info.h>

/*
 * sys_foo everyone's favorite system call.
 *
 * Returns the size of the per-process kernel stack.
 */
asmlinkage long sys_foo(void)
{
 return THREAD_SIZE;
}

EXAMPLE OF IMPLEMENTING
A SYSCALL foo()

Accessing the System Call from User-Space

http://www.cs.albany.edu/~sdc/CSI500/Fal11/Labs/L06/OwnSyscall.html

It is not hard to implement a new system call!!!

#define __NR_foo 283
__syscall0(long, foo)

int main ()
{
 long stack_size;

 stack_size = foo ();
 printf ("The kernel stack size is %ld\n", stack_size);

 return 0;
}

http://www.cs.albany.edu/~sdc/CSI500/Fal11/Labs/L06/OwnSyscall.html
http://www.cs.albany.edu/~sdc/CSI500/Fal11/Labs/L06/OwnSyscall.html

WHY NOT TO IMPLEMENT A
SYSTEM CALL?

Pros:

Syscalls are simple to implement and easy to use

Syscalls performance on Linux is blindingly fast

Cons:

You need a syscall number, which needs to be officially assigned to you during a developmental kernel series.

After the system call is in a stable series kernel, it is written in stone.

Each architecture needs to separately register the system call and support it

System calls are not easily used from scripts and cannot be accessed directly from the filesystem.

For simple exchange of information, a system call is overkill.

The slow rate of addition of new system calls is a sign that Linux is a relatively stable and feature-complete OS.

WHY INTERRUPTS?

A primary responsibility of the kernel is managing the hardware

Processors are typically magnitudes faster than the hardware
they talk to

Not ideal for the kernel to issue a request and wait for a
response from slow hardware

Polling -- kernel periodically check the status of the hardware
and respond accordingly (incurs overhead!)

Interrupts -- the hardware signal the kernel when attention is
needed (better solution!)

WHAT ARE INTERRUPTS?

Allow hardware to communicate with the processor

When you type, keyboard controller signals the
processor a newly available key press

The processor receives the interrupt and signals the
OS to respond to the new data

Interrupts are generated asynchronously

Consequently, the kernel can be interrupted at any time

HOW INTERRUPTS?

Physically produced by electronic signals originating from
hardware devices and directed into input pins on an
interrupt controller

The interrupt controller sends a signal to the processor

The processor detects this signal and interrupts its current
execution to handle the interrupt

The processor can then notify the OS to handle the interrupt
appropriately

INTERRUPT VALUES

Different devices associated with unique values

Enable OS differentiate between interrupts from different hardware devices

OS services each interrupt with a unique handler

Interrupt values called interrupt request (IRQ) lines

IRQ zero is the timer interrupt, IRQ one is the keyboard interrupt

Not all interupt numbers are so regidly defined!

Specific interrupt is associated with a specific device, and the kernel knows
this

EXCEPTIONS

Occur synchronously w.r.t. the processor clock

synchronous interrupts

Produced by the processor

E.g., divide by zero, a page fault, or a system call

The kernel infrastructure for handling the two is
similar

INTERRUPT HANDLERS

Function in response to a specific interupt

A.k.a. interrupt service routine (ISR)

Each device that generates interrupts has an associated interrupt handler

Part of the device’s driver -- the kernel code that manages the device

Imperative that the handler runs quickly

Needs to immediately respond to the hardware

Also needs to resume the execution of the interrupted code asap.

The two halves approach!

TOP HALVES VS. BOTTOM
HALVES

At the very least, the handler just acknowledge the receipt to the hardware

Often, however, the handlers have a large amount of work to perform

E.g., the gigabit Ethernet cards.

Contrast goals -- execute quickly and perform a large amount of work!

Because of the conflicting goals, the processing of interrupts is split into two parts:

The handler is the top half -- immediate response and perform only time
critical work

What that can be performed later is delayed to the bottom half

EXAMPLE --NETWORK CARD

When network cards receive incoming packets off the network, they need to alert the kernel

Need to do this immediately

To optimize network throughput and avoid timeouts

The kernel responds by executing the network card’s registered interrupt

Inside interrupt (top half), acknowledge the hardware, copy the packets into main memory,
ready the network card for more packets

These jobs are important, time-critical, and hardware-specific work

The rest of processing and handling in the bottom half

Push the packets down to the appropriate protocol stack or application

REGISTERING AN INTERRUPT
HANDLER

Responsibility of the device driver

Register an interrupt handler and enable a given interrupt line for handling

irq, specifies the interrupt number to allocate

handler, is a function point to the actual interrupt handler service

irqflags, might be either zero or a bit mask of one or more of the following:

SA_INTERRUPT, SA_SAMPLE_RANDOM, SA_SHIRQ

devname, device ASCII text representation

dev_id, is used primarily for shared interrupt lines

/* request_irq: allocate a given interrupt line */
int request_irq(unsigned int irq,
 irqreturn_t (*handler)(int, void *, struct pt_regs *),
 unsigned long irqflags,
 const char *devname,
 void *dev_id)

REGISTERING AN INTERRUPT
HANDLER

On registration, an entry corresponding to the interrupt is created in /proc/irq

The function proc_mkdir() to is used to create new procfs entries, which in turn call
kmalloc() to allocate memory

Since kmalloc() can sleep, the function request_irq() can sleep.

Never use it in interrupt context!

In a driver, requesting an interrupt line and installing a handler is done via request_irq():

Free an interrupt handler by:

if (request_irq(irqn, my_interrupt, SA_SHIRQ, "my_device", dev)) {
 printk(KERN_ERR "my_device: cannot register IRQ %d\n", irqn);
 return -EIO;
}

void free_irq(unsigned int irq, void *dev_id)

EXAMPLE -- RTC DRIVER

http://lxr.free-electrons.com/source/drivers/char/
rtc.c

rtc_init() invoked to initialize the driver

/* register rtc_interrupt on RTC_IRQ */
if (request_irq(RTC_IRQ, rtc_interrupt, SA_INTERRUPT, "rtc", NULL) {
 printk(KERN_ERR "rtc: cannot register IRQ %d\n", RTC_IRQ);
 return -EIO;
}

http://lxr.free-electrons.com/source/drivers/char/rtc.c
http://lxr.free-electrons.com/source/drivers/char/rtc.c
http://lxr.free-electrons.com/source/drivers/char/rtc.c
http://lxr.free-electrons.com/source/drivers/char/rtc.c

/*
 * A very tiny interrupt handler. It runs with SA_INTERRUPT set,
 * but there is a possibility of conflicting with the set_rtc_mmss()
 * call (the rtc irq and the timer irq can easily run at the same
 * time in two different CPUs). So we need to serialize
 * accesses to the chip with the rtc_lock spinlock that each
 * architecture should implement in the timer code.
 * (See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
 */
static irqreturn_t rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
 /*
 * Can be an alarm interrupt, update complete interrupt,
 * or a periodic interrupt. We store the status in the
 * low byte and the number of interrupts received since
 * the last read in the remainder of rtc_irq_data.
 */

 spin_lock (&rtc_lock);

 rtc_irq_data += 0x100;
 rtc_irq_data &= ~0xff;
 rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);

 if (rtc_status & RTC_TIMER_ON)
 mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);

 spin_unlock (&rtc_lock);

 /*
 * Now do the rest of the actions
 */
 spin_lock(&rtc_task_lock);
 if (rtc_callback)
 rtc_callback->func(rtc_callback->private_data);
 spin_unlock(&rtc_task_lock);
 wake_up_interruptible(&rtc_wait);

 kill_fasync (&rtc_async_queue, SIGIO, POLL_IN);

 return IRQ_HANDLED;
}

INTERRUPT CONTEXT

Process context is the mode of operation the kernel is in while it is executing on
behalf of a process

current macro points to the associated task

Because a process is coupled to the kernel in process context, process context
can sleep

Interrupt context is NOT associated with a process

current macro is not relevant (although it points to the interrupted process)

Without a backing process, interrupt context cannot sleep

How would it ever reschedule? No way!

THE PATH AN INTERRUPT
TAKES

DEMO: STATISTICS OF
INTERRUPTS

cat /proc/interrupts

BOTTOM HALVES

Tasklets and Work Queues

Covered in MP1 Q&A already :-)

REFERENCES

http://www.makelinux.net/books/lkd2/?
u=ch06lev1sec6

http://www.win.tue.nl/~aeb/linux/lk/lk.html#toc4

http://www.thegeekstuff.com/2013/06/compile-
linux-kernel/

http://lxr.free-electrons.com/source/

http://www.makelinux.net/books/lkd2/?u=ch06lev1sec6
http://www.makelinux.net/books/lkd2/?u=ch06lev1sec6
http://www.makelinux.net/books/lkd2/?u=ch06lev1sec6
http://www.makelinux.net/books/lkd2/?u=ch06lev1sec6
http://www.win.tue.nl/~aeb/linux/lk/lk.html#toc4
http://www.win.tue.nl/~aeb/linux/lk/lk.html#toc4
http://www.thegeekstuff.com/2013/06/compile-linux-kernel/
http://www.thegeekstuff.com/2013/06/compile-linux-kernel/
http://www.thegeekstuff.com/2013/06/compile-linux-kernel/
http://www.thegeekstuff.com/2013/06/compile-linux-kernel/
http://lxr.free-electrons.com/source/
http://lxr.free-electrons.com/source/

