
Virtual Meow

Virtual File System on

Android

Kam Cheung Ting

Tian Xia

Ruogu Zeng

Background

 Growing Demand for Phone Storage

 Faster Mobile Network

More Videos, Images, Musics

 Larger Size Application and Data Package

Ex. 3D Games on Mobile Phone

Problem

 Storage of Android-Phone disk is limited

 Extended by SD card

 Limited disk extension(64GB)

 Slower (2MB/s – 10 MB/s)

 Backup in Cloud Drive

More Storage

Much Slower

 Backup in PC and other devices

Have to connect to a computer

Problem

 SD card, Cloud Drive, PC backup

 Require Manual File management

Complex, awful user experience!!!!

Problem

 SD card, Cloud Drive, PC backup

 Require Manual File management

Complex, awful user experience!!!!

Our Solution: Virtual File System

Our Solution: Vitual File System

 Based on Cloud Drive

Use limited local disk as a cache

 Transparent File Transfer

between local disk and cloud drive

Automatically File Management

No need for root, run in Userspace

Our Solution: Virtual File System

Architecture

Sqlite Database

(All Files Info)

VFS

UI: File Explorer

Cloud DriveScheduler

Local Server

SQLite Database

 Id – each file will have a unique id

 Name – the name of the file

 Path – absolute path of the file

 last_visit_time –time that the file is last visited

 Is_local – is the file stored locally

 Size – the size of the file

 is_directory – the file item a directory

 Probabiilty – used be the GDFS algorithm

Scheduler

 For download, the scheduler will

schedule the download immediately.

 For upload, the scheduler will schedule

to upload one file per minute.

 If the file system needs to upload 5 files, the

upload task will finish in 5 min.

File Cache Algorithm

Greed-Dual-Frequency-Size (GDFS)

Combination of

Greedy-Dual-Size(GDS)

 Higher file hit ratio, lower bit hit ratio

Greedy-Dual-Frequency(GDF)

 Lower file hit ratio, higher file hit ratio

 Elegant performance for both

file hit ratio and bit hit ratio

GDFS Cache Algorithm

Priority Queue

Priority Value

Pr(f) = Clock + Fr(f)/Size(f)

Pr(f) : Priority of f

Fr(f) : Frequency count of f

Size(f) : File size of f

Define Used and Total

Used as current usage for local storage

Total as max usage for local storage

GDFS Cache Algorithm

 Pr(f) = Clock + Fr(f)/Size(f)

 If request for f is a hit

 Fr(f) ++

Update Pr(f)

 If request for f is a miss

 Fr(f) is set to 1

Update Pr(f)

Used += Size(f)

GDFS Cache Algorithm – cache f

 If Used <= Total

 Cache f, completed

 If Used > Total

 Identify the smallest set {f1,f2, ..., fk} to evict

to satisfy Used - 𝑖=0
𝑘 𝑆𝑖𝑧𝑒 𝑓𝑖 ≤ 𝑇𝑜𝑡𝑎𝑙

GDFS Cache Algorithm – cache f

 Evict {f1, f2, ... fk}

 If f is not among {f1, f2, ..., fk}

 Set Clock to Max (Pr(fi))

Used -= 𝑖=0
𝑘 𝑆𝑖𝑧𝑒 𝑓𝑖

Evict {f1, f2, ..., fk} and cache f

Otherwise, do not cache f

Happens when Pr(f) is too low.

 Ex. Size(f) is too large

Use system default settings to download and open

Future Work

 Support More Storage Extension Solution

 Support more APIs

Commercial Cloud Drive

 ex. Dropbox, Google Drive

Bluetooth Connection to Storage Devices

PC and configured server

 File Encryption

Divide Large File into manageable size

Virtual Meow Demo

Thanks!

 Collaboration

 Kam Cheung Ting, Tian Xia, Ruogu Zeng

 {cting4, txia, rzeng4}@illinois.edu

 Reference

 Cherkasova, Ludmila, and Gianfranco Ciardo. "Role

of aging, frequency, and size in web cache
replacement policies." High-Performance Computing

and Networking. Springer Berlin Heidelberg, 2001.

Questions?

