
Virtual Meow

Virtual File System on

Android

Kam Cheung Ting

Tian Xia

Ruogu Zeng

Background

 Growing Demand for Phone Storage

 Faster Mobile Network

More Videos, Images, Musics

 Larger Size Application and Data Package

Ex. 3D Games on Mobile Phone

Problem

 Storage of Android-Phone disk is limited

 Extended by SD card

 Limited disk extension(64GB)

 Slower (2MB/s – 10 MB/s)

 Backup in Cloud Drive

More Storage

Much Slower

 Backup in PC and other devices

Have to connect to a computer

Problem

 SD card, Cloud Drive, PC backup

 Require Manual File management

Complex, awful user experience!!!!

Problem

 SD card, Cloud Drive, PC backup

 Require Manual File management

Complex, awful user experience!!!!

Our Solution: Virtual File System

Our Solution: Vitual File System

 Based on Cloud Drive

Use limited local disk as a cache

 Transparent File Transfer

between local disk and cloud drive

Automatically File Management

No need for root, run in Userspace

Our Solution: Virtual File System

Architecture

Sqlite Database

(All Files Info)

VFS

UI: File Explorer

Cloud DriveScheduler

Local Server

SQLite Database

 Id – each file will have a unique id

 Name – the name of the file

 Path – absolute path of the file

 last_visit_time –time that the file is last visited

 Is_local – is the file stored locally

 Size – the size of the file

 is_directory – the file item a directory

 Probabiilty – used be the GDFS algorithm

Scheduler

 For download, the scheduler will

schedule the download immediately.

 For upload, the scheduler will schedule

to upload one file per minute.

 If the file system needs to upload 5 files, the

upload task will finish in 5 min.

File Cache Algorithm

Greed-Dual-Frequency-Size (GDFS)

Combination of

Greedy-Dual-Size(GDS)

 Higher file hit ratio, lower bit hit ratio

Greedy-Dual-Frequency(GDF)

 Lower file hit ratio, higher file hit ratio

 Elegant performance for both

file hit ratio and bit hit ratio

GDFS Cache Algorithm

Priority Queue

Priority Value

Pr(f) = Clock + Fr(f)/Size(f)

Pr(f) : Priority of f

Fr(f) : Frequency count of f

Size(f) : File size of f

Define Used and Total

Used as current usage for local storage

Total as max usage for local storage

GDFS Cache Algorithm

 Pr(f) = Clock + Fr(f)/Size(f)

 If request for f is a hit

 Fr(f) ++

Update Pr(f)

 If request for f is a miss

 Fr(f) is set to 1

Update Pr(f)

Used += Size(f)

GDFS Cache Algorithm – cache f

 If Used <= Total

 Cache f, completed

 If Used > Total

 Identify the smallest set {f1,f2, ..., fk} to evict

to satisfy Used - 𝑖=0
𝑘 𝑆𝑖𝑧𝑒 𝑓𝑖 ≤ 𝑇𝑜𝑡𝑎𝑙

GDFS Cache Algorithm – cache f

 Evict {f1, f2, ... fk}

 If f is not among {f1, f2, ..., fk}

 Set Clock to Max (Pr(fi))

Used -= 𝑖=0
𝑘 𝑆𝑖𝑧𝑒 𝑓𝑖

Evict {f1, f2, ..., fk} and cache f

Otherwise, do not cache f

Happens when Pr(f) is too low.

 Ex. Size(f) is too large

Use system default settings to download and open

Future Work

 Support More Storage Extension Solution

 Support more APIs

Commercial Cloud Drive

 ex. Dropbox, Google Drive

Bluetooth Connection to Storage Devices

PC and configured server

 File Encryption

Divide Large File into manageable size

Virtual Meow Demo

Thanks!

 Collaboration

 Kam Cheung Ting, Tian Xia, Ruogu Zeng

 {cting4, txia, rzeng4}@illinois.edu

 Reference

 Cherkasova, Ludmila, and Gianfranco Ciardo. "Role

of aging, frequency, and size in web cache
replacement policies." High-Performance Computing

and Networking. Springer Berlin Heidelberg, 2001.

Questions?

