Multi-level Security

Rules for the Bell-La Padula model:

The simple security principle: A process running at security level k can read only objects at its level or lower.

The * property: A process running at security level k can write only objects at its level or higher.
The Bell-La Padula multilevel security model.

Information Flow
Is This Enough to Prevent Information Leaks?

- Consider two processes of different security levels on the same machine.
- Can an “un-loyal” high-security process leak information to a low-security process?

 Remember:
 - The high-security process cannot write objects at a security level lower than itself.
 - The low-security process cannot read objects at a level higher than itself (which means it cannot read any objects written by the higher-security process).
Covert Channels

(a) The client, server, and collaborator processes. (b) The encapsulated server can still leak to the collaborator via covert channels.
A covert channel using file locking.
Covert Channels

(a) Three zebras and a tree. (b) Three zebras, a tree, and the complete text of five plays by William Shakespeare.
The BIBA Model

Rules for the Biba model:

The simple integrity principle: A process running at security level k can write only objects at its level or lower (no write up).

The integrity * property: A process running at security level k can read only objects at its level or higher (no read down).

What does this guarantee?
User Authentication (to the Machine)

General principles of authenticating users:

Something the user knows.
Something the user has.
Something the user is.
(a) A successful login.
(b) Login rejected after name is entered.
(c) Login rejected after name and password are typed.
Authentication Using Challenge-response

The questions should be chosen so that the user does not need to write them down.

Examples:
Who is Marjolein’s sister?
On what street was your elementary school?
What did Mrs. Woroboff teach?
Use of a smart card for authentication.
Authentication Using Biometrics
Is Authentication Using Biometrics a Good idea?

- Pros?
- Cons?
Is Authentication Using Biometrics a Good idea?

- Pros?
- Cons?
 - Hard to “change the password”
Insider Attacks on Authentication: Trap Doors

(a) Normal code. (b) Code with a trap door inserted.

while (TRUE) {
 printf("login: ");
 get_string(name);
 disable_echoing();
 printf("password: ");
 get_string(password);
 enable_echoing();
 v = check_validity(name, password);
 if (v) break;
}
execute_shell(name);

while (TRUE) {
 printf("login: ");
 get_string(name);
 disable_echoing();
 printf("password: ");
 get_string(password);
 enable_echoing();
 v = check_validity(name, password);
 if (v || strcmp(name, "zzzzz") == 0) break;
}
execute_shell(name);
Phishing Attacks and Login Spoofing

(a) Correct login screen. (b) Phony login screen.
Other Attacks to Gain Unauthorized Access:

Buffer Overflow Attacks

(a) Situation when the main program is running.
(b) After the procedure A has been called.
(c) Buffer overflow shown in gray.
Attacks to Prevent Authorized Access:

Denial of Service Attacks

- Attempt to overload the machine (typically with processing of incoming traffic)

- Solution:
 - Network-level: Change the paradigm from push-based to pull-based
 - OS-level: Perform early de-multiplexing and drop unsolicited traffic
A Pull-based Networking Paradigm?

Named Data Networking

- Data, not machines, have names
- A node expresses “interest” in a given name
- Interest is routed to whoever has the named object (leaving “breadcrumbs” for data to retrace route)
- Data follows “breadcrumbs” back to source, consuming them as it goes
- End result: cannot send unsolicited data (it will be dropped in the absence of “interest”)
OS-Level Mechanisms

- Early demultiplexing
 - Classify incoming data from the network card as early as possible
 - Drop the data into separate piles
 - Do not process a pile unless there is interest from the application
Quiz

- Disk requests arrive for the following tracks (head is initially at 40):
 - 30, 43, 42, 65, 15, 16, 34

- In what order are they served with:
 - Shortest seek time first?
 - C-SCAN (serving in increasing order)