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The Linux Scheduler
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What Are Scheduling Goals?
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Goals of the Linux Scheduler

 Generate illusion of concurrency
 Maximize resource utilization (hint: mix CPU and 

I/O bound processes appropriately)
 Meet needs of both I/O-bound and CPU-bound 

processes
 Give I/O-bound processes better interactive response
 Do not starve CPU-bound processes

 Support Real-Time (RT) applications
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Priority Structure

 Real-time processes have the top 99 priority 
levels.

 Non-real-time processes have levels 100-
139
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Two Fundamental Resource 
Sharing Mechanisms

 ?
 ?
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Two Fundamental Resource 
Sharing Mechanisms

 Prioritization
 Resource partitioning
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SCHED_FIFO

 Used for real-time processes
 Conventional preemptive fixed-priority 

scheduling
 Current process continues to run until it ends 

or a higher-priority real-time process becomes 
runnable

 Same-priority processes are scheduled 
FIFO
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SCHED_RR

 Used for real-time processes
 CPU “partitioning” among same priority 

processes
 Current process continues to run until it ends 

or its time quantum expires
 Quantum size determines the CPU share

 Processes of a lower priority run when no 
processes of a higher priority are present 



9

SCHED_NORMAL

 Used for non-real-time processes
 Complex heuristic to balance the needs of 

I/O and CPU centric applications
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Process Priority & Timeslice 
Recalculation

 Static priority
 A “nice” value
 Inherited from the parent process
 Set up by user

 Dynamic priority
 Based on static priority and applications characteristics (interactive or 

CPU-bound)
 Favor interactive applications over CPU-bound ones

 Timeslice is mapped from priority



11

Heuristics

if (static priority < 120)
Quantum = 20 (140 – static priority)

else
Quantum = 5  (140 – static priority)

(in ms)
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Heuristics

bonus = min (10, avg. sleep time / 100) (ms)

dynamic priority = max (100, min (static 
priority – bonus + 5, 139))
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How & When to Preempt?

 Kernel sets the need_resched flag (per-process var) at various 
locations
 scheduler_tick(), a process used up its timeslice
 try_to_wake_up(), higher-priority process awaken

 Kernel checks need_resched at certain points, if safe, schedule() will 
be invoked

 User preemption
 Return to user space from a system call or an interrupt handler

 Kernel preemption
 A task in the kernel explicitly calls schedule()
 A task in the kernel blocks (which results in a call to schedule() )
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Other Scheduling Policies
(… that you can implement)

 What if you want to maximize throughput?
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Other Scheduling Policies
(… that you can implement)

 What if you want to maximize throughput?
 Shortest job first!
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Other Scheduling Policies
(… that you can implement)

 What if you want to meet all deadlines?
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Other Scheduling Policies
(… that you can implement)

 What if you want to meet all deadlines?
 Earliest deadline first!
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Other Scheduling Policies
(… that you can implement)

 What if you want to meet all deadlines?
 Earliest deadline first!

 Problem?
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Other Scheduling Policies
(… that you can implement)

 What if you want to meet all deadlines?
 Earliest deadline first!

 Problem?
 Works only if you are not “overloaded”. If the 

total amount of work is more than capacity, a 
domino effect occurs as you always choose the 
task with the nearest deadline (that you have 
the least chance of finishing by the deadline), 
so you may miss a lot of deadlines!
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Example of EDF Domino Effect

 Problem:
 You have a homework due tomorrow (Thursday), a 

homework due Friday, and a homework due Saturday
 It takes on average 1.5 days to finish a homework.

 Question: What is your best (scheduling) policy? 
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Example of EDF Domino Effect

 Problem:
 You have a homework due tomorrow (Thursday), a 

homework due Friday, and a homework due Saturday
 It takes on average 1.5 days to finish a homework.

 Question: What is your best (scheduling) policy?
 Note that EDF is bad: It always forces you to work on the 

next deadline, but you have only one day between deadlines 
which is not enough to finish a 1.5 day homework – you 
might not complete any of the three homeworks! 

 You could instead skip the Thursday homework and work on 
the next two, which you could then finish by their deadlines
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Scheduling Periodic Tasks
(in Embedded Systems)

Embedded Computing 
Systems
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Drive-by-Wire Example
 Consider a control system in a drive-by-wire vehicle

 Steering wheel sampled every 10 ms – wheel positions 
adjusted accordingly (computing the adjustment takes 
4.5 ms of CPU time)

 Breaks sampled every 4 ms – break pads adjusted 
accordingly (computing the adjustment takes 2ms of CPU 
time)

 Velocity is sampled every 15 ms – acceleration is 
adjusted accordingly (computing the adjustment takes 
0.45 ms)

 For safe operation, adjustments must always be 
computed before the next sample is taken

 What scheduling policy to use?
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Drive-by-Wire Example

 Find a schedule that makes sure all task 
invocations meet their deadlines

Steering wheel task (4.5 ms every 10 ms)

Breaks task (2 ms every 4 ms)

Velocity control task (0.45 ms every 15 ms)
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Drive-by-Wire Example
 Sanity check: Is the processor over-utilized? (e.g., if you have 5 

homeworks due this time tomorrow, each takes 6 hours, then 5x6 
= 30 > 24  you are overutilized)

Steering wheel task (4.5 ms every 10 ms)

Breaks task (2 ms every 4 ms)

Velocity control task (0.45 ms every 15 ms)
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Drive-by-Wire Example
 Sanity check: Is the processor over-utilized? (e.g., if you have 5 

homeworks due this time tomorrow, each takes 6 hours, then 5x6 
= 30 > 24  you are overutilized)
 Hint: Check if processor utilization > 100%

Steering wheel task (4.5 ms every 10 ms)

Breaks task (2 ms every 4 ms)

Velocity control task (0.45 ms every 15 ms)
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Task Scheduling
 How to assign task priorities?

Steering wheel task (4.5 ms every 10 ms)

Breaks task (2 ms every 4 ms)

Velocity control task (0.45 ms every 15 ms)

How to assign priorities to tasks?
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Task Scheduling
 How to assign task priorities?

 Rate Monotonic (large rate = higher priority)

Steering wheel task (4.5 ms every 10 ms)

Breaks task (2 ms every 4 ms)

Velocity control task (0.45 ms every 15 ms)

Intuition: Urgent tasks should be higher in priority
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Problem?
 Deadlines are missed!
 Average Utilization < 100%

Breaks task (2 ms every 4 ms)

Steering wheel task (4.5 ms every 10 ms)

Velocity control task (0.45 ms every 15 ms)
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Problem?
 Deadlines are missed!
 Average Utilization < 100%

Breaks task (2 ms every 4 ms)

Steering wheel task (4.5 ms every 10 ms)

Velocity control task (0.45 ms every 15 ms)

Fix: 
Give this task invocation
a lower priority
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Fix
 Deadlines are missed!
 Average Utilization < 100%

Breaks task (2 ms every 4 ms)

Steering wheel task (4.5 ms every 10 ms)

Velocity control task (0.45 ms every 15 ms)

Fix: 
Give this task invocation
a lower priority
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Task Scheduling
 Static versus Dynamic priorities?

 Static: Instances of the same task have the same priority
 Dynamic: Instances of same task may have different priorities

Breaks task (2 ms every 4 ms)

Steering wheel task (4.5 ms every 10 ms)

Velocity control task (0.45 ms every 15 ms)

Intuition: Dynamic priorities offer the designer more flexibility and 
hence are more capable to meet deadlines 
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Real-time Scheduling of 
Periodic Tasks

 Result #1: Earliest Deadline First (EDF) is the 
optimal dynamic priority scheduling policy for 
independent periodic tasks (meets the most 
deadlines of all dynamic priority scheduling 
policies)

 Result #2: Rate Monotonic Scheduling (RM) is the 
optimal static priority scheduling policy for 
independent periodic tasks (meets the most 
deadlines of all static priority scheduling policies)
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Advanced Topic: 
Locking and Priority Inversion

 What if a higher-priority process needs a 
resource locked by a lower-priority process?
 How long will the higher priority process have 

to wait for lower-priority execution? 
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Priority Inversion

 Locks and priorities may be at odds. 
Locking results in priority inversion

High-priority task

Low-priority task

Lock S

Preempt.
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Priority Inversion

 Locks and priorities may be at odds. 
Locking results in priority inversion

High-priority task

Low-priority task

Lock S

Attempt to lock S 
results in blocking

Preempt.

Priority 
Inversion
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Priority Inversion

 How to account for priority inversion?

High-priority task

Low-priority task

Lock S

Attempt to lock S 
results in blocking

Preempt.

Unlock S

Lock S
Unlock S

Priority 
Inversion
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Unbounded Priority Inversion

 Consider the case below: a series of 
intermediate priority tasks is delaying a 
higher-priority one

High-priority task

Low-priority task

Lock S

Preempt.

Intermediate-priority tasks

Preempt.

…
Unbounded Priority Inversion

Attempt to lock S 
results in blocking
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Unbounded Priority Inversion

 How to prevent unbounded priority 
inversion?

High-priority task

Low-priority task

Lock S

Preempt.

Intermediate-priority tasks

Preempt.

…
Unbounded Priority Inversion

Attempt to lock S 
results in blocking



40

Priority Inheritance Protocol

 Let a task inherit the priority of any higher-
priority task it is blocking

High-priority task

Low-priority task

Lock S

Preempt.

Intermediate-priority tasks …

Attempt to lock S 
results in blocking

Lock S
Unlock S

Unlock S
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Priority Inheritance Protocol

 Question: What is the longest time a task 
can wait for lower-priority tasks?
 Let there be N tasks and M locks
 Let the largest critical section of task i be of 

length Bi

 Answer: ?
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Computing the Maximum 
Priority Inversion Time

 Consider the instant when a high-priority task 
that arrives. 
 What is the most it can wait for lower priority ones?

Semaphore Queue Resource
1

Semaphore Queue Resource
2

Semaphore Queue Resource
M

If I am a task, priority 
inversion occurs when
(a) Lower priority task holds a 
resource I need (direct blocking)
(b) Lower priority task inherits a 
higher priority than me because 
it holds a resource the higher-
priority task needs (push-through 
blocking)
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Maximum Blocking Time
Priority Inheritance Protocol

Need Red
Need Blue

Need Yellow
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Priority Ceiling Protocol

 Definition: The priority ceiling of a semaphore is 
the highest priority of any task that can lock it

 A task that requests a lock Rk is denied if its 
priority is not higher than the highest priority 
ceiling of all currently locked semaphores (say it 
belongs to semaphore Rh)
 The task is said to be blocked by the task holding lock 

Rh

 A task inherits the priority of the top higher-
priority task it is blocking
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Maximum Blocking Time
Priority Ceiling Protocol

Need Yellow but
Priority is lower
Than Red ceiling  

Need Blue but
Priority is lower
Than Red ceiling  Need Red but

Priority is lower
Than Red ceiling  

Done
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Maximum Blocking Time
Priority Ceiling Protocol

Need Yellow but
Priority is lower
Than Red ceiling  

Need Blue but
Priority is lower
Than Red ceiling  Need Red but

Priority is lower
Than Red ceiling  

Done
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Questions
 1) In Linux, you want to schedule a group of processes 

strictly in priority order (no time slices). Which policy 
should you choose?

 2) In Linux, you want to give a set of 3 processes (that 
never block) the same priority but apportion the CPU 
among them by the ratios: 30%, 20% and 50%. Which 
policy should you choose?

 3) In Linux, if a process (that is scheduled by 
SCHED_NORMAL) never blocks, at most how many 
priority levels its dynamic priority can drop compared 
to its static priority?


