Linux Kernel Programming

Raoul Rivas

Kernel vs Application Programming

KERNEL APPLICATION
No memory protection . Memory Protection
. We share memory with . Segmentation Fault

devices, scheduler Preemption

. Sometimes no preemption . Scheduling isn't our

. Can hog the CPU responsibility
. Concurrency is difficult . Signals (Control-C)
No libraries . Libraries
No Printf(), fopen() . Security Descriptors
No security descriptors . In Linux everything is a file
In Linux no access to files descriptor

Direct access to hardware . Access to hardware as files

System Calls

. A system call involves an OxFFFFS0
iInterrupt : Kernel Space
Sysca S .
syscall(number, table sys_write()
arguments))

Copy_from_user()

. The kernelrunsin a

different address space o \

Data must be copied back syscall(WRITE, ptr, i

and forth ! \

. Copy_to_user(), write(ptr, size); \
copy_from_user() P /

Never directly dereference S

any pointer from user space 0X011075

Context

Context: Entity whom the kernel is running code on behalf of

Process context and Kernel Context are preemptible. We can sleep in them
Interrupts cannot sleep and should be small!

All these entities are concurrent!

Process context and Kernel context have a PID:

. Struct task_struct* current

Race Conditions

. Process context, Kernel Context and Interrupts
run concurrently

. How to protect critical zones from race
conditions?

. Spinlocks

. Mutex

. Semaphores

. Reader-Writer Locks (Mutex, Semaphores)
. Reader-Writer Spinlocks

—THE SPINLOCK SPINS... THE MUTEX SLEEPS

Inside Locking Primitives

. Spinlock + Mutex

. . //mutex_lock:
//spinlock_lock: If (locked==true)

disable_interrupts() {
while (locked==true) ;

Enqueue (this) .
Yield()
//critical region) S
locked=true;

//spinlock_unlock:
enable_interrupts(): //critical region

locked=false;
//mutex_unlock:

_ If !isEmpty(waitqueue)
We can't sleep while the {

spinlock is locked! — wakeup (Dequeue ()) ;
DEADLOCK }

Else locked=false;
We can't use a mutex in
an interrupt because
Interrupts can't sleep!

When to use what?

A\

Q
0

. Usually functions that handle memory, user space or
devices and scheduling sleep

. Kmalloc, printk, copy to user, schedule
. wake up process does not sleep

Linux Kernel Modules

#define MODULE

#define LINUX

Extensibility

#define __ KERNEL___

. |dea”y yOU donlt want to #include <linux/module.h> #include
patch but build a kernel <linux/kernel.h> #include

<linux/init.h>

module - o o |
static 1nt __init myilnit(void)
. . {
Separate Compllatlon printk (KERN_ALERT “"Hello, world\n”);
. . Ret 0;
Runtime-Linkage v
Entry and Exit Functions static void __exit myexit(void)
{
. RuUn in Process Context printk (KERN_ALERT “Goodbye,
world\n”);
LKM “Hello-World” }

module_init(myinit);
module_exit(myexit)
MODULE_LICENSE(“"GPL") ;

Jiffles and The Kernel Loop

. The Linux kernel uses the concept of
jiffies to measure time

Inside the kernel there is a loop to
measure time and preempt tasks

. Ajiffy is the period at which the timer
In this loop is triggered

. Varies from system to system 100
Hz, 250 Hz, 1000 Hz.

Use the variable HZ to get the
value.

. The schedule function is the

function that preempts tasks

Timer

1/HZ

tick_periodic:

add_timer(1 jiffy)
jiffies++

scheduler _tick()

/

schedule()

Deferring Work / Two Halves

. Kernel Timers are used to create

timed events

. They use jiffies to measure time

. Timers are interrupts

. We can't sleep or hog CPU In
them!

. Solution: Divide the work In two

parts

. Use the timer handler to signal a
thread. (TOP HALF)

. Let the kernel thread do the
real job. (BOTTOM HALF)

TOP HALF

Timer

Interrupt
context

Kernel
context

N

7z

Timer Handler:
wake up(thread);

BOTTOM
HALF

Linux Kernel Map

_— Linux kernel map
functionalities human interface system processing memory storage networking

layers
y HI char devices <one INterfaces core BRI] |~ TMemory access . files & directories .. SOckets access

_brk
user cdev_add ‘ I:Ieﬂace system files. I m:l:"d z_x:
space oot e ot T L
- copy_from_i sysfs_ops
interfaces . o sy, o
system calls froecboesai] et 003) { =
and system files Y= caav‘-map oys_opoll crete = | sye - = t_cache_seq_show

cdev. SYs_reboot

o ot

sock_ioctt
protocol famlll%s
inet_init create

virtual

. user peripherals : memory disk controllers network controllers
electronics v : controtr L L [

Optimizing Performance

. Minimize copying

. Use good data structures

. Optimize the common case

. Branch optimization: likely(), unlikely()
. Avoid process migration or cache misses
. Avoid dynamic assignment of interrupts to different CPUs

. Combine Operations within the same layer to minimize
passes to the data

. e.g: Checksum + data copying

Optimizing Performance

. Cache/Reuse as much as you can

. Cache Headers, SLAB allocator
. Hierarchical Design + Information Hiding

. Data encapsulation

. Separation of concerns

. Interrupt Moderation/Mitigation

. Group Timers if possible

Conclusion

. The Linux kernel has 3 main contexts: Kernel, Process and
Interrupt.

. Use spinlock for interrupt context and mutexes if you plan to
sleep holding the lock

Implement a module avoid patching the kernel main tree

. To defer work implement two halves. Timers + Threads

References

Linux Kernel Map http://www.makelinux.net/kernel_map

Linux Kernel Cross Reference Source

R. Love, Linux Kernel Development , 2"d Edition, Novell Press,
2006

http://www.makelinux.net/kernel_map
http://www.makelinux.net/kernel_map

