
Linux Kernel Programming

Raoul Rivas

Kernel vs Application Programming
KERNEL

● No memory protection

● We share memory with

devices, scheduler

● Sometimes no preemption

● Can hog the CPU

● Concurrency is difficult

● No libraries

● No Printf(), fopen()

● No security descriptors

● In Linux no access to files

● Direct access to hardware

APPLICATION

● Memory Protection

● Segmentation Fault

● Preemption

● Scheduling isn't our

responsibility

● Signals (Control-C)

● Libraries

● Security Descriptors

● In Linux everything is a file

descriptor

● Access to hardware as files

System Calls

● A system call involves an

interrupt

● syscall(number,

arguments)

● The kernel runs in a

different address space

● Data must be copied back

and forth

● copy_to_user(),

copy_from_user()

● Never directly dereference

any pointer from user space

Kernel Space

User Space

Syscall
table

write(ptr, size);

ptr

syscall(WRITE, ptr, size)

sys_write()

Copy_from_user()

INT
0x80

0xFFFF50

0x011075

Context

● Context: Entity whom the kernel is running code on behalf of

● Process context and Kernel Context are preemptible. We can sleep in them

● Interrupts cannot sleep and should be small!

● All these entities are concurrent!

● Process context and Kernel context have a PID:

● Struct task_struct* current

Race Conditions

● Process context, Kernel Context and Interrupts

run concurrently

● How to protect critical zones from race

conditions?

● Spinlocks

● Mutex

● Semaphores

● Reader-Writer Locks (Mutex, Semaphores)

● Reader-Writer Spinlocks

Inside Locking Primitives
● Spinlock

//spinlock_lock:
disable_interrupts();
while(locked==true);

//critical region

//spinlock_unlock:
enable_interrupts();
locked=false;

● Mutex

//mutex_lock:
If (locked==true)
{
 Enqueue(this);
 Yield();
}
locked=true;

//critical region

//mutex_unlock:
If !isEmpty(waitqueue)
{
 wakeup(Dequeue());
}
Else locked=false;

We can't sleep while the
spinlock is locked! →
DEADLOCK

We can't use a mutex in
an interrupt because
interrupts can't sleep!

THE MUTEX SLEEPS THE SPINLOCK SPINS...

When to use what?

● Usually functions that handle memory, user space or

devices and scheduling sleep

● Kmalloc, printk, copy_to_user, schedule

● wake_up_process does not sleep

Linux Kernel Modules

● Extensibility

● Ideally you don't want to

patch but build a kernel

module

● Separate Compilation

● Runtime-Linkage

● Entry and Exit Functions

● Run in Process Context

● LKM “Hello-World”

#define MODULE

#define LINUX

#define __KERNEL__

#include <linux/module.h> #include
<linux/kernel.h> #include
<linux/init.h>

static int __init myinit(void)
{
 printk(KERN_ALERT "Hello, world\n");
 Return 0;
}

static void __exit myexit(void)
{
 printk(KERN_ALERT "Goodbye,

world\n");
}

module_init(myinit);
module_exit(myexit);
MODULE_LICENSE("GPL");

Jiffies and The Kernel Loop

● The Linux kernel uses the concept of

jiffies to measure time

● Inside the kernel there is a loop to

measure time and preempt tasks

● A jiffy is the period at which the timer

in this loop is triggered

● Varies from system to system 100

Hz, 250 Hz, 1000 Hz.

● Use the variable HZ to get the

value.

● The schedule function is the

function that preempts tasks

schedule()

Timer
1/HZ

add_timer(1 jiffy)
jiffies++

scheduler_tick()

tick_periodic:

Deferring Work / Two Halves

● Kernel Timers are used to create

timed events

● They use jiffies to measure time

● Timers are interrupts

● We can't sleep or hog CPU in

them!

● Solution: Divide the work in two

parts

● Use the timer handler to signal a

thread. (TOP HALF)

● Let the kernel thread do the

real job. (BOTTOM HALF)

Timer

Timer Handler:
wake_up(thread);

Thread:
While(1)
{
 Do work();

 Schedule();
}

Interrupt
context

Kernel
context

TOP HALF

BOTTOM
HALF

Linux Kernel Map

Optimizing Performance
● Minimize copying

● Use good data structures

● Optimize the common case

● Branch optimization: likely(), unlikely()

● Avoid process migration or cache misses

● Avoid dynamic assignment of interrupts to different CPUs

● Combine Operations within the same layer to minimize

passes to the data

● e.g: Checksum + data copying

Optimizing Performance

● Cache/Reuse as much as you can

● Cache Headers, SLAB allocator

● Hierarchical Design + Information Hiding

● Data encapsulation

● Separation of concerns

● Interrupt Moderation/Mitigation

● Group Timers if possible

Conclusion

● The Linux kernel has 3 main contexts: Kernel, Process and

Interrupt.

● Use spinlock for interrupt context and mutexes if you plan to

sleep holding the lock

● Implement a module avoid patching the kernel main tree

● To defer work implement two halves. Timers + Threads

References
● Linux Kernel Map http://www.makelinux.net/kernel_map

● Linux Kernel Cross Reference Source

● R. Love, Linux Kernel Development , 2nd Edition, Novell Press,

2006

http://www.makelinux.net/kernel_map
http://www.makelinux.net/kernel_map

