
MP 1 – Formalizing a Simple Imperative
Programming Language in Isabelle

CS 422 – Spring 2017
Revision 1.0

Assigned February 1, 2017
Due February 8, 2017, 8:00pm
Extension 48 hours (20% penalty)

1 Change Log
1.0 Initial Release.

2 Turn-In Procedure
Put your code as plain text for this MP in a file named mp1.thy, and submit your plain text file mp1.thy by first
adding it to your svn repository directory assignments/mp1, which may be done using the command
(svn add mp1.thy) and then committing it using
(svn commit -m "submitting mp1" mp1.thy). Your file should contain your name, and netid in a com-
ment at the top, and it should contain your solution. It should be named mp1.thy and committed in your assignments/mp1
directory.

3 Objectives
The purpose of this MP is to familiarize you with using Isabelle to specify a simple imperative programming language
abstract syntax and Natural Semantics.

4 Background
In class, we have looked at a simple imperative programming language SIMPL1 and how to specify it in Natural
Semantics, and how to formalize this Isabelle. In this assignment you will be asked to extend this Isabelle formalization
for expressions and commands.

4.1 Syntax of SIMPL1
In class, we worked with specifying in Isabelle the language SIMPL1 whose concrete syntax is given by the BNF
Grammar below:

I ∈ Identifiers

N ∈ Numerals

E ::= N | I | E + E | E ∗ E | E − E

B ::= true | false | B&B | B or B | not B | E < E | E = E

C ::= skip | C;C | {C} | I := E | if B then C else C fi | while B do C od

1

4.2 Natural Semantics for SIMPL1
Assuming a set Values of final results of expressions (in this case you can assume integers), and m, m′ : Identifiers ⇀
Values, recall the Natural Semantics we gave for the SIMPL1 as follows:

Constants:

Identifiers: (I,m) ⇓ m(I) if m(I) exists Numerals are values: (N,m) ⇓ N

Booleans: (true,m) ⇓ true (false,m) ⇓ false

Arithmetic Expressions:

(E,m) ⇓ U (E′,m) ⇓ V U ⊕ V = N

(E ⊕ E′,m) ⇓ N
where ⊕ ∈ {+, ∗,−} and U, V ∈ Values

Arithmetic Relations:

(E,m) ⇓ U (E′,m) ⇓ V U ∼ V = b

(E ∼ E′,m) ⇓ b
where ∼∈ {==, <}

Boolean Expressions:

(B,m) ⇓ false

(B&B′,m) ⇓ false

(B,m) ⇓ false (B′,m) ⇓ b

(B or B′,m) ⇓ b

(B,m) ⇓ false

(not B,m) ⇓ true

(B,m) ⇓ true (B′,m) ⇓ b

(B&B′,m) ⇓ b

(B,m) ⇓ true

(B or B′,m) ⇓ true

(B,m) ⇓ true

(not B,m) ⇓ false

Commands:

Assignment:
(E,m) ⇓ V

(I := E,m) ⇓ m[I ← V]
where m[I ← V](J) =

{
V if J = I
m(J) otherwise

Skip: (skip,m) ⇓ m Sequencing:
(C,m) ⇓ m′ (C ′,m′) ⇓ m′′

(C;C ′,m) ⇓ m′′ Block:
(C,m) ⇓ m′

({C},m) ⇓ m′

If-true:
(B,m) ⇓ true (C,m) ⇓ m′

(if B then C else C ′ fi,m) ⇓ m′ If-false:
(B,m) ⇓ false (C ′,m) ⇓ m′

(if B then C else C ′ fi,m) ⇓ m′

While-false:
(B,m) ⇓ false

(while B do C od ,m) ⇓ m

While-true:
(B,m) ⇓ true (C,m) ⇓ m′ (while B do C od ,m′) ⇓ m′′

(while B do C od ,m) ⇓ m′′

5 Problems
Your work for the problems below should be entered in the file mp1.thy, modifying definitions you find there to
include the extensions described below.

1. (3 pts) Extend the datatype definition of exp to include a term constructor named Div for integer division. It
should take two arguments of type exp. After you have successfully done this, you should be able to enter

2

term "Div (Plus (Val 3) (Val 4)) (Minus (Div (Val 6) (Val 2)) (Val 1))"

and you should see

′′Div (Val 3 +E Val 4) (Div (Val 6) (Val 2) −E Val 1)′′

:: ′′exp′′

with Div appearing in black (not blue) in all occurrences. The term line is also found in the file mp1 tests.thy.
If you would like to use infix notation for Div, you may add (infixl "\<div>\<ˆsub>E" 165) to the
end of the clause for Div in the exp datatype. If you do this and then put the cursor on the term line given above
in mp1 tests.thy, you should see

′′(Val 3 +E Val 4) ÷E (Val 6 ÷E Val 2 −E Val 1)′′

:: ′′exp′′

This time, there should be no appearances of Div, but two infixed appearances of ÷E instead.

2. (10 pts) Extend the semantics of exp to include a rule for the evaluation of division. The evaluation semantics of
Div x y is the result of evaluating x to, say, u, evaluating y to, say, v, and if v is not 0, then evaluating u/v as
the final result. If you have entered your rule correctly, the following theorem (in mp1 tests.thy) should be
provable:

lemma test4:
"eval_exp (Div (Val 2) (Var ’’x’’), Map.empty(’’x’’ := Some 13)) 0"
by force

3. (6 pts) Extend the datatype definition of commands to include the term constructor named RepeatCom,
which takes a bool exp argument and a command argument. Upon successful completion of this, you should to
able to enter

term "RepeatCom (AssignCom ’’a’’ (Var ’’b’’)) (Bool True)"

and see

′′RepeatCom (′ ′a′ ′ ::= Var ′ ′b′ ′) (Bool True)′′

::′′ command′′

If you would like to have your abstract syntax displayed with something more like ordinary programming syntax,
add ("REPEAT _/ UNTIL _/ DONE" [70,70] 70) to the end of you clause for RepeatCom. Entering
the above term line then display the following results:

′′REPEAT ′ ′a′ ′ ::= Var ′ ′b′ ′ UNTIL Bool True DONE′′

::′′ command′′

4. (12 pts) To evaluate RepeatCom C B in a memory m, first evaluate C in m and use the resulting memory m′ to
evaluate B. If B evaluates to true then the result of evaluating RepeatCom C B in m in m′. If the result of B is
false, then the result of evaluating RepeatCom C B in m is the result of evaluating RepeatCom C B in m′. If
you have entered your rule correctly, the following theorem (in mp1 tests.thy) should be provable:

3

lemma test6:
"eval_command
(RepeatCom (AssignCom ’’a’’ (Var ’’b’’)) (Bool True),
Map.empty(’’b’’ := Some 3))
((Map.empty(’’b’’ := Some 3))(’’a’’ := Some 3))"

by force

4

