Getting Started with Isabelle

- Install on your machine
 - Source is at http://www.cl.cam.ac.uk/research/hvg/Isabelle/
- Will (try to) put on EWS
 - Assuming you are running an X client, log in to EWS:
 ssh -Y <netid>@remlnx.ews.illinois.edu
 - `-Y` used to forward X packets securely
- To start Isabelle with jEdit on EWS (or other command line)
 /class/cs477/bin/isabelle jedit

Overview of Isabelle/HOL

- HOL = Higher-Order Logic
- HOL = Types + Lambda Calculus + Logic
- HOL has
 - datatypes
 - recursive functions
 - logical operators (∧, ∨, ¬, →, ∀, ∃, ...)
- Contains propositional logic, first-order logic
- HOL is very similar to a functional programming language
- Higher-order = functions are values, too!
- We'll start with propositional and first order logic

Formulae (first Approximation)

- Syntax (in decreasing priority):

 form ::= (form)
 | term = term
 | ¬form
 | form ∨ form
 | ∀x. form
 | ∃x. form

- Scope of quantifiers: as far to the right as possible

Examples

- ¬A ∧ B ∨ C ≡ ((¬A) ∧ B) ∨ C
- A ∧ B = C ≡ A ∧ (B = C)
- ∀x. P x ∧ Q x ≡ ∀x. (P x ∧ Q x)
- ∀x, y. P x ∧ Q x ≡ ∀x, y. (∃y. (P x ∧ Q x))
Isabelle Syntax

- Distinct from HOL syntax
- Contains HOL syntax within it
- Layer above HOL, but effectively (a large fragment of) HOL
- Need to not confuse them

Theory = Module

Syntax:

```
theory MyTh
imports ImpTh1 ... ImpThn
begin
  declarations, definitions, theorems, proofs, ...
end
```

- `MyTh`: name of theory being built. Must live in file `MyTh.thy`.
- `ImpThi`: name of imported theories. Importing is transitive.

Meta-logic: Basic Constructs

Implication: \(\Rightarrow \) (\(\Rightarrow \Rightarrow \))
For separating premises and conclusion of theorems / rules

Equality: \(\equiv \) (\(\equiv \))
For definitions

Universal Quantifier: \(\forall \) (\(\forall \))
Usually inserted and removed by Isabelle automatically

Do not use inside HOL formulae

Rule/Goal Notation

```
[| A_1; ...; A_n |] \Rightarrow B
```
abbreviates

```
A_1 \Rightarrow ... \Rightarrow A_n \Rightarrow B
```
and means the rule (or potential rule):

\[
\frac{A_1; ...; A_n}{B}
\]

\(\therefore \) “and”

Note: A theorem is a rule; a rule is a theorem.

The Proof/Goal State

1. \(\forall x_1 ... x_m. [A_1; ...; A_n] \Rightarrow B \)

- \(x_1 ... x_m \): Local constants (fixed variables)
- \(A_1 ... A_n \): Local assumptions
- \(B \): Actual (sub)goal

Not dequire after here (now?)
Isabelle uses Natural Deduction proofs. It uses (modified) sequent encoding.

Rule notation:

\[A_1 \ldots A_n \quad | \quad A_1 \ldots A_n \Rightarrow A \]

Introduction: How can I prove \(A \oplus B \)?

Elimination: What can I prove using \(A \oplus B \)?

Operational Reading:

Introduction rule:
To prove \(A \) it suffices to prove \(A_1 \ldots A_n \).

Elimination rule:
If we know \(A_1 \) and we want to prove \(A \) it suffices to prove \(A_2 \ldots A_n \).

Natural Deduction for Propositional Logic:

\[\begin{align*}
A &\quad \text{conjI} \\
A \land B &\quad \text{conjE} \\
A \land B &\quad \text{impI} \\
A \land B &\quad \text{notI} \\
\neg A &\quad \text{notE}
\end{align*} \]

More Rules:

\[\begin{align*}
\text{iffI} &\quad A \rightarrow B, B \rightarrow A \\
\text{iffD1} &\quad A = B \\
\text{iffD2} &\quad A = B
\end{align*} \]
“Classical” Rules

\[A \Rightarrow \text{False} \]
\[\text{ccontr} \]
\[A \Rightarrow A \text{ classical} \]

- \text{ccontr} and \text{classical} are not derivable from the Natural Deduction rules.
- They make the logic “classical”, i.e. “non-constructive or "non-intuitionistic".

Proof by Assumption

\[\begin{align*}
A_1 & \ldots & A_n
\end{align*} \]

- Proof method: \text{assumption}
- Use: \text{apply assumption}
- Proves: \[[A_1; \ldots ; A_n] \Rightarrow A \]
 by unifying \(A \) with one of the \(A_i \)

Rule Application: The Rough Idea

Applying rule \[[A_1; \ldots ; A_n] \Rightarrow A \] to subgoal \(C \):

- Unify \(A \) and \(C \)
- Replace \(C \) with \(n \) new subgoals: \(A'_1 \ldots A'_n \)

Backwards reduction, like in Prolog

Example: rule \[(?P; ?Q) \Rightarrow ?P \land ?Q \]

subgoal: \[1. A \land B \]

Result: \[1. A2. B \]

Rule Application: More Complete Idea

Applying rule \[[A_1; \ldots ; A_n] \Rightarrow A \] to subgoal \(C \):

- Unify \(A \) and \(C \) with (meta)-substitution \(\sigma \)
- Specialize goal to \(\sigma (C) \)
- Replace \(C \) with \(n \) new subgoals: \(\sigma (A_1) \ldots \sigma (A_n) \)

Note: schematic variables in \(C \) treated as existential variables
Does there exist value for \(?X \) in \(C \) that makes \(C \) true?
(Still not the whole story)

Rule Application

Rule: \[[A_1; \ldots ; A_n] \Rightarrow A \]

Subgoal: \[1. [B_1; \ldots ; B_m] \Rightarrow C \]

Substitution: \(\sigma (A) \equiv \sigma (C) \)

New subgoals: \[1. [\sigma (B_1); \ldots ; \sigma (B_m)] \Rightarrow \sigma (A_1) \]
\[\vdots \]
\[n. [\sigma (B_1); \ldots ; \sigma (B_m)] \Rightarrow \sigma (A_n) \]

Proves: \[[\sigma (B_1); \ldots ; \sigma (B_m)] \Rightarrow \sigma (C) \]

Command: \text{apply (rule <rulename>)}

Applying Elimination Rules

apply (rule <elim-rule>)

Like \text{rule} but also

- Unifies first premise of rule with an assumption
- Eliminates that assumption instead of conclusion
Example

Subgoal: 1. \[|X; A \land B; Y| \implies Z\]

Unification: \(?P \land ?Q \equiv A \land B\) and \(?R \equiv Z\)

New subgoal: 1. \[|X; Y| \implies |A; B| \implies Z\]

Same as: 1. \[|X; Y; A; B| \implies Z\]