Programming Language Design (CS 422)

Elsa L Gunter
2112 Siebel Center, UIUC
egunter@illinois.edu
http://courses.engr.illinois.edu/cs422/sp2016

Slides based in part on previous lectures by Grigore Roșu

January 18, 2017
Contact Information

- Office: 2112 Siebel Center
- Office hours:
 - Wednesday, Friday 12:50pm – 1:45pm
 - Also by appointment
- Email: egunter@illinois.edu
Course Website

- **main** page - summary of news items
- **policy** - rules governing the course
- **lectures** - syllabus, slides and example code
- **mps** - Information about homework
- **unit projects** - for 4 credit students
- **resources** - papers, tools, and helpful info
- **faq** - answers to some general questions about the course and course resources
Some Course References

- No Required Textbook

- *Concrete Semantics With Isabelle/HOL*, by Tobias Nipkow and Gerwin Klein. Springer, 2014. (In your snv directory)

- Lecture Notes of Grigore Rosu, found in Resources

Main Programming Platform: Isabelle/HOL

- Download from: http://www.cl.cam.ac.uk/research/hvg/Isabelle/
- Runs inside jEdit
- Two implementation languages: SML (for proofs) and Scala (for jEdit)
- Full-powered general-purpose interactive mathematical theorem prover
- Can export executable specifications directly to code in SML, OCaml, Haskell, and Scala.
- Can export annotated theories to \(\text{\LaTeX} \) documents
- Accompanied by an impressive library of formally verified mathematics and support for programming language semantics in the Archive of Formal Proofs https://www.isa-afp.org
Course Grading

- Homeworks – 30%
 - MPs turned in as plain text (theory) files
 - submitted via course svn student directories
- Midterm – 30%
- Final – 40%
- Unit Project
 - Only for 4-credit graduate students
 - Worth 25%, with all other parts scaled down accordingly
Collaboration on Assignments

- You may discuss homeworks and their solutions with others
- You may work in groups, but you must list members with whom you worked
- Each student must turn in their own solution separately
- You may look at examples from class and other similar examples from any source
- Note: University policy on plagiarism still holds
- Problems from homework may appear verbatim, or with some modification on exams
Default Unit Project

1. Design, formalize and create an interpreter for a new language with specified features.
 - Will be an extension of previously describe language.

2. Give a substantial proof in Isabelle of a property of a programming language
 - Based on language described in class (unless you want to do more).

3. Students may develop alternate projects with instructor approval.
Course Objectives

- Learn different methods of specifying the meaning of language features and how to reason about them
 - Structural Operational Semantics
 - Transition Semantics
 - Reduction Semantics with Evaluation Contexts
 - Brief overview of K

- Learn to specify different language features
 - Imperative Features
 - Object Oriented Features
 - Functional Features
 - Type Systems
Semantics

- Expresses the meaning of syntax
- Static semantics
 - Meaning based only on the form of the expression without executing it
 - Usually restricted to type checking / type inference
- Dynamic semantics
 - Method of describing meaning of executing a program
 - Used for formal reasoning about programs and languages
 - Several different types:
 - Operational Semantics
 - Axiomatic Semantics
 - Denotational Semantics
Dynamic Semantics

- Different languages better suited to different types of semantics
- Different types of semantics serve different purposes
Operational Semantics

- Start with a simple notion of machine
- Describe how to execute (implement) programs of language on virtual machine, by describing how to execute each program statement (ie, following the structure of the program)
- Meaning of program is how its execution changes the state of the machine
- Useful as basis for implementations
Axiomatic Semantics

- Also called Floyd-Hoare Logic
- Based on formal logic (first order predicate calculus)
- Axiomatic Semantics is a logical system built from axioms and inference rules
- Mainly suited to simple imperative programming languages
Axiomatic Semantics

- Used to formally prove a property (post-condition) of the state (the values of the program variables) after the execution of program, assuming another property (precondition) of the state before execution
- Written:

 \[\{ \text{Precondition}\} \text{Program}\{ \text{Postcondition}\} \]

- Source of idea of loop invariant
- Useful for program specification and verification
Denotational Semantics

- Construct a function M assigning a mathematical meaning to each program construct
- Lambda calculus often used as the range of the meaning function
- Meaning function is compositional: meaning of construct built from meaning of parts
- Mainly used for proving properties of programs
Natural Semantics

- Aka “Big Step Semantics”
- Originally introduced by Giles Kahn
- Provide value for a program by rules and derivations
- Rule conclusions look like
 \[(C, m) \Downarrow m'\]
 or
 \[(E, m) \Downarrow v\]

- Type derivation rules often take very similar shape
Simple Imperative Programming Language #1

\[I \in \text{Identifiers} \]
\[N \in \text{Numerals} \]
\[E ::= N \mid I \mid E + E \mid E \ast E \mid E - E \]
\[B ::= \text{true} \mid \text{false} \mid B \& B \mid B \text{ or } B \mid \text{not } B \]
\[E \mid E < E \mid E = E \]
\[C ::= \text{skip} \mid C; C \mid \{C\} \mid I ::= E \]
\[\mid \text{if } B \text{ then } C \text{ else } C \text{ fi} \]
\[\mid \text{while } B \text{ do } C \text{ od} \]
Natural Semantics of Atomic Expressions

Let $m : \text{Identifiers} \rightarrow \text{Values}$ be a partial function supplying values for program variable names

Identifiers: $(l, m) \downarrow m(l)$

Numerals are values: $(N, m) \downarrow N$

Booleans: $(\text{true}, m) \downarrow \text{true}$

$(\text{false}, m) \downarrow \text{false}$
\[
\begin{align*}
(B, m) \downarrow \text{false} & \quad \quad (B, m) \downarrow \text{true} & \quad \quad (B', m) \downarrow b \\
(B \& B', m) \downarrow \text{false} & \quad \quad (B \& B', m) \downarrow b \\
(B, m) \downarrow \text{true} & \quad \quad (B, m) \downarrow \text{false} & \quad \quad (B', m) \downarrow b \\
(B \text{ or } B', m) \downarrow \text{true} & \quad \quad (B \text{ or } B', m) \downarrow b \\
(B, m) \downarrow \text{true} & \quad \quad (B, m) \downarrow \text{false} \\
(\text{not } B, m) \downarrow \text{false} & \quad \quad (\text{not } B, m) \downarrow \text{true}
\end{align*}
\]
By \(U \sim V = b \), we mean does (the meaning of) the relation \(\sim \) hold on the meaning of \(U \) and \(V \).

May be specified by a mathematical expression/equation or rules matching \(U \) and \(V \).
(E, m) ↓ U (E', m) ↓ V U ⊕ V = N

(E ⊕ E', m) ↓ N

where N is the specified value for U ⊕ V
Commands

Skip: \((\text{skip}, m) \Downarrow m\)

\[(E, m) \Downarrow V\]

Assignment: \((l ::= E, m) \Downarrow m[l \leftarrow V]\)

\[(C, m) \Downarrow m' \quad (C', m') \Downarrow m''\]

Sequencing: \((C; C', m) \Downarrow m''\)

Block: \((\{C\}, m) \Downarrow m'\)

where \(m[l \leftarrow V](J) = \begin{cases} V & \text{if } J = l \\ m(J) & \text{otherwise} \end{cases}\)
If Then Else Command

\[
\begin{align*}
(B, m) \downarrow \text{true} & \quad (C, m) \downarrow m' \\
& \quad \frac{(\text{if } B \text{ then } C \text{ else } C' \text{ fi, } m) \downarrow m'}{(C', m) \downarrow m'} \\
(B, m) \downarrow \text{false} & \quad (C', m) \downarrow m' \\
& \quad \frac{(\text{if } B \text{ then } C \text{ else } C' \text{ fi, } m) \downarrow m'}{(C', m) \downarrow m'}
\end{align*}
\]
(\(B, m\) \(\Downarrow\) false)

\((\text{while } B \text{ do } C \text{ od }, m) \Downarrow m\)

\((B, m) \Downarrow \text{true} \quad (C, m) \Downarrow m' \quad (\text{while } B \text{ do } C \text{ od }, m') \Downarrow m''\)

\((\text{while } B \text{ do } C \text{ od }, m) \Downarrow m''\)
What is the new semantics?

What changes to our “machine state” do we need to make?